Sort by:
Page 18 of 25243 results

A continuous-action deep reinforcement learning-based agent for coronary artery centerline extraction in coronary CT angiography images.

Zhang Y, Luo G, Wang W, Cao S, Dong S, Yu D, Wang X, Wang K

pubmed logopapersJun 1 2025
The lumen centerline of the coronary artery allows vessel reconstruction used to detect stenoses and plaques. Discrete-action-based centerline extraction methods suffer from artifacts and plaques. This study aimed to develop a continuous-action-based method which performs more effectively in cases involving artifacts or plaques. A continuous-action deep reinforcement learning-based model was trained to predict the artery's direction and radius value. The model is based on an Actor-Critic architecture. The Actor learns a deterministic policy to output the actions made by an agent. These actions indicate the centerline's direction and radius value consecutively. The Critic learns a value function to evaluate the quality of the agent's actions. A novel DDR reward was introduced to measure the agent's action (both centerline extraction and radius estimate) at each step. The method achieved an average OV of 95.7%, OF of 93.6%, OT of 97.3%, and AI of 0.22 mm in 80 test data. In 53 cases with artifacts or plaques, it achieved an average OV of 95.0%, OF of 91.5%, OT of 96.7%, and AI of 0.23 mm. The 95% limits of agreement between the reference and estimated radius values were <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo></math> 0.46 mm and 0.43 mm in the 80 test data. Experiments demonstrate that the Actor-Critic architecture can achieve efficient centerline extraction and radius estimate. Compared with discrete-action-based methods, our method performs more effectively in cases involving artifacts or plaques. The extracted centerlines and radius values allow accurate coronary artery reconstruction that facilitates the detection of stenoses and plaques.

Changes of Pericoronary Adipose Tissue in Stable Heart Transplantation Recipients and Comparison with Controls.

Yang J, Chen L, Yu J, Chen J, Shi J, Dong N, Yu F, Shi H

pubmed logopapersJun 1 2025
Pericoronary adipose tissue (PCAT) is a key cardiovascular risk biomarker, yet its temporal changes after heart transplantation (HT) and comparison with controls remain unclear. This study investigates the temporal changes of PCAT in stable HT recipients and compares it to controls. In this study, we analyzed 159 stable HT recipients alongside two control groups. Both control groups were matched to a subgroup of HT recipients who did not have coronary artery stenosis. Group 1 consisted of 60 individuals matched for age, sex, and body mass index (BMI), with no history of hypertension, diabetes, hyperlipidemia, or smoking. Group 2 included 56 individuals additionally matched for hypertension, diabetes, hyperlipidemia, and smoking history. PCAT volume and fat attenuation index (FAI) were measured using AI-based software. Temporal changes in PCAT were assessed at multiple time points in HT recipients, and PCAT in the subgroup of HT recipients without coronary stenosis was compared to controls. Stable HT recipients exhibited a progressive decrease in FAI and an increase in PCAT volume over time, particularly in the first five years post-HT. Similar trends were observed in the subgroup of HT recipients without coronary stenosis. Compared to controls, PCAT FAI was significantly higher in the HT subgroup during the first five years post-HT (P < 0.001). After five years, differences persisted but diminished, with no statistically significant differences observed in the PCAT of left anterior descending artery (LAD) (P > 0.05). A negative correlation was observed between FAI and PCAT volume post-HT (r = - 0.75 ∼ - 0.53). PCAT volume and FAI undergo temporal changes in stable HT recipients, especially during the first five years post-HT. Even in HT recipients without coronary stenosis, PCAT FAI differs from controls, indicating distinct changes in this cohort.

CineMA: A Foundation Model for Cine Cardiac MRI

Yunguan Fu, Weixi Yi, Charlotte Manisty, Anish N Bhuva, Thomas A Treibel, James C Moon, Matthew J Clarkson, Rhodri Huw Davies, Yipeng Hu

arxiv logopreprintMay 31 2025
Cardiac magnetic resonance (CMR) is a key investigation in clinical cardiovascular medicine and has been used extensively in population research. However, extracting clinically important measurements such as ejection fraction for diagnosing cardiovascular diseases remains time-consuming and subjective. We developed CineMA, a foundation AI model automating these tasks with limited labels. CineMA is a self-supervised autoencoder model trained on 74,916 cine CMR studies to reconstruct images from masked inputs. After fine-tuning, it was evaluated across eight datasets on 23 tasks from four categories: ventricle and myocardium segmentation, left and right ventricle ejection fraction calculation, disease detection and classification, and landmark localisation. CineMA is the first foundation model for cine CMR to match or outperform convolutional neural networks (CNNs). CineMA demonstrated greater label efficiency than CNNs, achieving comparable or better performance with fewer annotations. This reduces the burden of clinician labelling and supports replacing task-specific training with fine-tuning foundation models in future cardiac imaging applications. Models and code for pre-training and fine-tuning are available at https://github.com/mathpluscode/CineMA, democratising access to high-performance models that otherwise require substantial computational resources, promoting reproducibility and accelerating clinical translation.

Subclinical atrial fibrillation prediction based on deep learning and strain analysis using echocardiography.

Huang SH, Lin YC, Chen L, Unankard S, Tseng VS, Tsao HM, Tang GJ

pubmed logopapersMay 31 2025
Subclinical atrial fibrillation (SCAF), also known as atrial high-rate episodes (AHREs), refers to asymptomatic heart rate elevations associated with increased risks of atrial fibrillation and cardiovascular events. Although deep learning (DL) models leveraging echocardiographic images from ultrasound are widely used for cardiac function analysis, their application to AHRE prediction remains unexplored. This study introduces a novel DL-based framework for automatic AHRE detection using echocardiograms. The approach encompasses left atrium (LA) segmentation, LA strain feature extraction, and AHRE classification. Data from 117 patients with cardiac implantable electronic devices undergoing echocardiography were analyzed, with 80% allocated to the development set and 20% to the test set. LA segmentation accuracy was quantified using the Dice coefficient, yielding scores of 0.923 for the LA cavity and 0.741 for the LA wall. For AHRE classification, metrics such as area under the curve (AUC), accuracy, sensitivity, and specificity were employed. A transformer-based model integrating patient characteristics demonstrated robust performance, achieving mean AUC of 0.815, accuracy of 0.809, sensitivity of 0.800, and specificity of 0.783 for a 24-h AHRE duration threshold. This framework represents a reliable tool for AHRE assessment and holds significant potential for early SCAF detection, enhancing clinical decision-making and patient outcomes.

The Impact of Model-based Deep-learning Reconstruction Compared with that of Compressed Sensing-Sensitivity Encoding on the Image Quality and Precision of Cine Cardiac MR in Evaluating Left-ventricular Volume and Strain: A Study on Healthy Volunteers.

Tsuneta S, Aono S, Kimura R, Kwon J, Fujima N, Ishizaka K, Nishioka N, Yoneyama M, Kato F, Minowa K, Kudo K

pubmed logopapersMay 30 2025
To evaluate the effect of model-based deep-learning reconstruction (DLR) compared with that of compressed sensing-sensitivity encoding (CS) on cine cardiac magnetic resonance (CMR). Cine CMR images of 10 healthy volunteers were obtained with reduction factors of 2, 4, 6, and 8 and reconstructed using CS and DLR. The visual image quality scores assessed sharpness, image noise, and artifacts. Left-ventricular (LV) end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF) were manually measured. LV global circumferential strain (GCS) was automatically measured using the software. The precision of EDV, ESV, SV, EF, and GCS measurements was compared between CS and DLR using Bland-Altman analysis with full-sampling data as the gold standard. Compared with CS, DLR significantly improved image quality with reduction factors of 6 and 8. The precision of EDV and ESV with a reduction factor of 8, and GCS with reduction factors of 6 and 8 measurements improved with DLR compared with CS, whereas those of SV and EF measurements were not different between DLR and CS. The effect of DLR on cine CMR's image quality and precision in evaluating quantitative volume and strain was equal or superior to that of CS. DLR may replace CS for cine CMR.

Using Deep learning to Predict Cardiovascular Magnetic Resonance Findings from Echocardiography Videos.

Sahashi Y, Vukadinovic M, Duffy G, Li D, Cheng S, Berman DS, Ouyang D, Kwan AC

pubmed logopapersMay 30 2025
Echocardiography is the most common modality for assessing cardiac structure and function. While cardiac magnetic resonance (CMR) imaging is less accessible, CMR can provide unique tissue characterization including late gadolinium enhancement (LGE), T1 and T2 mapping, and extracellular volume (ECV) which are associated with tissue fibrosis, infiltration, and inflammation. Deep learning has been shown to uncover findings not recognized by clinicians, however it is unknown whether CMR-based tissue characteristics can be derived from echocardiography videos using deep learning. To assess the performance of a deep learning model applied to echocardiography to detect CMR-specific parameters including LGE presence, and abnormal T1, T2 or ECV. In a retrospective single-center study, adult patients with CMRs and echocardiography studies within 30 days were included. A video-based convolutional neural network was trained on echocardiography videos to predict CMR-derived labels including LGE presence, and abnormal T1, T2 or ECV across echocardiography views. The model was also trained to predict presence/absence of wall motion abnormality (WMA) as a positive control for model function. The model performance was evaluated in a held-out test dataset not used for training. The study population included 1,453 adult patients (mean age 56±18 years, 42% female) with 2,556 paired echocardiography studies occurring at a median of 2 days after CMR (interquartile range 2 days prior to 6 days after). The model had high predictive capability for presence of WMA (AUC 0.873 [95%CI 0.816-0.922]) which was used for positive control. However, the model was unable to reliably detect the presence of LGE (AUC 0.699 [0.613-0.780]), abnormal native T1 (AUC 0.614 [0.500-0.715]), T2 0.553 [0.420-0.692], or ECV 0.564 [0.455-0.691]). Deep learning applied to echocardiography accurately identified CMR-based WMA, but was unable to predict tissue characteristics, suggesting that signal for these tissue characteristics may not be present within ultrasound videos, and that the use of CMR for tissue characterization remains essential within cardiology.

Phantom-Based Ultrasound-ECG Deep Learning Framework for Prospective Cardiac Computed Tomography.

Ganesh S, Lindsey BD, Tridandapani S, Bhatti PT

pubmed logopapersMay 30 2025
We present the first multimodal deep learning framework combining ultrasound (US) and electrocardiography (ECG) data to predict cardiac quiescent periods (QPs) for optimized computed tomography angiography gating (CTA). The framework integrates a 3D convolutional neural network (CNN) for US data and an artificial neural network (ANN) for ECG data. A dynamic heart motion phantom, replicating diverse cardiac conditions, including arrhythmias, was used to validate the framework. Performance was assessed across varying QP lengths, cardiac segments, and motions to simulate real-world conditions. The multimodal US-ECG 3D CNN-ANN framework demonstrated improved QP prediction accuracy compared to single-modality ECG-only gating, achieving 96.87% accuracy compared to 85.56%, including scenarios involving arrhythmic conditions. Notably, the framework shows higher accuracy for longer QP durations (100 ms - 200 ms) compared to shorter durations (<100ms), while still outperforming single-modality methods, which often fail to detect shorter quiescent phases, especially in arrhythmic cases. Consistently outperforming single-modality approaches, it achieves reliable QP prediction across cardiac regions, including the whole phantom, interventricular septum, and cardiac wall regions. Analysis of QP prediction accuracy across cardiac segments demonstrated an average accuracy of 92% in clinically relevant echocardiographic views, highlighting the framework's robustness. Combining US and ECG data using a multimodal framework improves QP prediction accuracy under variable cardiac motion, particularly in arrhythmic conditions. Since even small errors in cardiac CTA can result in non-diagnostic scans, the potential benefits of multimodal gating may improve diagnostic scan rates in patients with high and variable heart rates and arrhythmias.

A Mixed-attention Network for Automated Interventricular Septum Segmentation in Bright-blood Myocardial T2* MRI Relaxometry in Thalassemia.

Wu X, Wang H, Chen Z, Sun S, Lian Z, Zhang X, Peng P, Feng Y

pubmed logopapersMay 30 2025
This study develops a deep-learning method for automatic segmentation of the interventricular septum (IS) in MR images to measure myocardial T2* and estimate cardiac iron deposition in patients with thalassemia. This retrospective study used multiple-gradient-echo cardiac MR scans from 419 thalassemia patients to develop and evaluate the segmentation network. The network was trained on 1.5 T images from Center 1 and evaluated on 3.0 T unseen images from Center 1, all data from Center 2, and the CHMMOTv1 dataset. Model performance was assessed using five metrics, and T2* values were obtained by fitting the network output. Bland-Altman analysis, coefficient of variation (CoV), and regression analysis were used to evaluate the consistency between automatic and manual methods. MA-BBIsegNet achieved a Dice of 0.90 on the internal test set, 0.85 on the external test set, and 0.81 on the CHMMOTv1 dataset. Bland-Altman analysis showed mean differences of 0.08 (95% LoA: -2.79 ∼ 2.63) ms (internal), 0.29 (95% LoA: -4.12 ∼ 3.54) ms (external) and 0.19 (95% LoA: -3.50 ∼ 3.88) ms (CHMMOTv1), with CoV of 8.9%, 6.8%, and 9.3%. Regression analysis yielded r values of 0.98 for the internal and CHMMOTv1 datasets, and 0.99 for the external dataset (p < 0.05). The IS segmentation network based on multiple-gradient-echo bright-blood images yielded T2* values that were in strong agreement with manual measurements, highlighting its potential for the efficient, non-invasive monitoring of myocardial iron deposition in patients with thalassemia.

Fully automated measurement of aortic pulse wave velocity from routine cardiac MRI studies.

Jiang Y, Yao T, Paliwal N, Knight D, Punjabi K, Steeden J, Hughes AD, Muthurangu V, Davies R

pubmed logopapersMay 30 2025
Aortic pulse wave velocity (PWV) is a prognostic biomarker for cardiovascular disease, which can be measured by dividing the aortic path length by the pulse transit time. However, current MRI techniques require special sequences and time-consuming manual analysis. We aimed to fully automate the process using deep learning to measure PWV from standard sequences, facilitating PWV measurement in routine clinical and research scans. A deep learning (DL) model was developed to generate high-resolution 3D aortic segmentations from routine 2D trans-axial SSFP localizer images, and the centerlines of the resulting segmentations were used to estimate the aortic path length. A further DL model was built to automatically segment the ascending and descending aorta in phase contrast images, and pulse transit time was estimated from the sampled flow curves. Quantitative comparison with trained observers was performed for path length, aortic flow segmentation and transit time, either using an external clinical dataset with both localizers and paired 3D images acquired or on a sample of UK Biobank subjects. Potential application to clinical research scans was evaluated on 1053 subjects from the UK Biobank. Aortic path length measurement was accurate with no major difference between the proposed method (125 ± 19 mm) and manual measurement by a trained observer (124 ± 19 mm) (P = 0.88). Automated phase contrast image segmentation was similar to that of a trained observer for both the ascending (Dice vs manual: 0.96) and descending (Dice 0.89) aorta with no major difference in transit time estimation (proposed method = 21 ± 9 ms, manual = 22 ± 9 ms; P = 0.15). 966 of 1053 (92 %) UK Biobank subjects were successfully analyzed, with a median PWV of 6.8 m/s, increasing 27 % per decade of age and 6.5 % higher per 10 mmHg higher systolic blood pressure. We describe a fully automated method for measuring PWV from standard cardiac MRI localizers and a single phase contrast imaging plane. The method is robust and can be applied to routine clinical scans, and could unlock the potential of measuring PWV in large-scale clinical and population studies. All models and deployment codes are available online.
Page 18 of 25243 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.