Sort by:
Page 17 of 32311 results

Generative Artificial Intelligence in Prostate Cancer Imaging.

Haque F, Simon BD, Özyörük KB, Harmon SA, Türkbey B

pubmed logopapersJul 1 2025
Prostate cancer (PCa) is the second most common cancer in men and has a significant health and social burden, necessitating advances in early detection, prognosis, and treatment strategies. Improvement in medical imaging has significantly impacted early PCa detection, characterization, and treatment planning. However, with an increasing number of patients with PCa and comparatively fewer PCa imaging experts, interpreting large numbers of imaging data is burdensome, time-consuming, and prone to variability among experts. With the revolutionary advances of artificial intelligence (AI) in medical imaging, image interpretation tasks are becoming easier and exhibit the potential to reduce the workload on physicians. Generative AI (GenAI) is a recently popular sub-domain of AI that creates new data instances, often to resemble patterns and characteristics of the real data. This new field of AI has shown significant potential for generating synthetic medical images with diverse and clinically relevant information. In this narrative review, we discuss the basic concepts of GenAI and cover the recent application of GenAI in the PCa imaging domain. This review will help the readers understand where the PCa research community stands in terms of various medical image applications like generating multi-modal synthetic images, image quality improvement, PCa detection, classification, and digital pathology image generation. We also address the current safety concerns, limitations, and challenges of GenAI for technical and clinical adaptation, as well as the limitations of current literature, potential solutions, and future directions with GenAI for the PCa community.

Photoacoustic-Integrated Multimodal Approach for Colorectal Cancer Diagnosis.

Biswas S, Chohan DP, Wankhede M, Rodrigues J, Bhat G, Mathew S, Mahato KK

pubmed logopapersJul 1 2025
Colorectal cancer remains a major global health challenge, emphasizing the need for advanced diagnostic tools that enable early and accurate detection. Photoacoustic (PA) spectroscopy, a hybrid technique combining optical absorption with acoustic resolution, is emerging as a powerful tool in cancer diagnostics. It detects biochemical changes in biomolecules within the tumor microenvironment, aiding early identification of malignancies. Integration with modalities, such as ultrasound (US), photoacoustic microscopy (PAM), and nanoparticle-enhanced imaging, enables detailed mapping of tissue structure, vascularity, and molecular markers. When combined with endoscopy and machine learning (ML) for data analysis, PA technology offers real-time, minimally invasive, and highly accurate detection of colorectal tumors. This approach supports tumor classification, therapy monitoring, and detecting features like hypoxia and tumor-associated bacteria. Recent studies integrating machine learning with PA imaging have demonstrated high diagnostic accuracy, achieving area under the curve (AUC) values up to 0.96 and classification accuracies exceeding 89%, highlighting its potential for precise, noninvasive colorectal cancer detection. Continued advancements in nanoparticle design, molecular targeting, and ML analytics position PA as a key tool for personalized colorectal cancer management.

A Review of the Opportunities and Challenges with Large Language Models in Radiology: The Road Ahead.

Soni N, Ora M, Agarwal A, Yang T, Bathla G

pubmed logopapersJul 1 2025
In recent years, generative artificial intelligence (AI), particularly large language models (LLMs) and their multimodal counterparts, multimodal large language models, including vision language models, have generated considerable interest in the global AI discourse. LLMs, or pre-trained language models (such as ChatGPT, Med-PaLM, LLaMA), are neural network architectures trained on extensive text data, excelling in language comprehension and generation. Multimodal LLMs, a subset of foundation models, are trained on multimodal data sets, integrating text with another modality, such as images, to learn universal representations akin to human cognition better. This versatility enables them to excel in tasks like chatbots, translation, and creative writing while facilitating knowledge sharing through transfer learning, federated learning, and synthetic data creation. Several of these models can have potentially appealing applications in the medical domain, including, but not limited to, enhancing patient care by processing patient data; summarizing reports and relevant literature; providing diagnostic, treatment, and follow-up recommendations; and ancillary tasks like coding and billing. As radiologists enter this promising but uncharted territory, it is imperative for them to be familiar with the basic terminology and processes of LLMs. Herein, we present an overview of the LLMs and their potential applications and challenges in the imaging domain.

Optimizing clinical risk stratification of localized prostate cancer.

Gnanapragasam VJ

pubmed logopapersJul 1 2025
To review the current risk and prognostic stratification systems in localised prostate cancer. To explore some of the most promising adjuncts to clinical models and what the evidence has shown regarding their value. There are many new biomarker-based models seeking to improve, optimise or replace clinical models. There are promising data on the value of MRI, radiomics, genomic classifiers and most recently artificial intelligence tools in refining stratification. Despite the extensive literature however, there remains uncertainty on where in pathways they can provide the most benefit and whether a biomarker is most useful for prognosis or predictive use. Comparisons studies have also often overlooked the fact that clinical models have themselves evolved and the context of the baseline used in biomarker studies that have shown superiority have to be considered. For new biomarkers to be included in stratification models, well designed prospective clinical trials are needed. Until then, there needs to be caution in interpretation of their use for day-to-day decision making. It is critical that users balance any purported incremental value against the performance of the latest clinical classification and multivariate models especially as the latter are cost free and widely available.

Physiological Confounds in BOLD-fMRI and Their Correction.

Addeh A, Williams RJ, Golestani A, Pike GB, MacDonald ME

pubmed logopapersJul 1 2025
Functional magnetic resonance imaging (fMRI) has opened new frontiers in neuroscience by instrumentally driving our understanding of brain function and development. Despite its substantial successes, fMRI studies persistently encounter obstacles stemming from inherent, unavoidable physiological confounds. The adverse effects of these confounds are especially noticeable with higher magnetic fields, which have been gaining momentum in fMRI experiments. This review focuses on the four major physiological confounds impacting fMRI studies: low-frequency fluctuations in both breathing depth and rate, low-frequency fluctuations in the heart rate, thoracic movements, and cardiac pulsatility. Over the past three decades, numerous correction techniques have emerged to address these challenges. Correction methods have effectively enhanced the detection of task-activated voxels and minimized the occurrence of false positives and false negatives in functional connectivity studies. While confound correction methods have merit, they also have certain limitations. For instance, model-based approaches require externally recorded physiological data that is often unavailable in fMRI studies. Methods reliant on independent component analysis, on the other hand, need prior knowledge about the number of components. Machine learning techniques, although showing potential, are still in the early stages of development and require additional validation. This article reviews the mechanics of physiological confound correction methods, scrutinizes their performance and limitations, and discusses their impact on fMRI studies.

The Evolution of Radiology Image Annotation in the Era of Large Language Models.

Flanders AE, Wang X, Wu CC, Kitamura FC, Shih G, Mongan J, Peng Y

pubmed logopapersJul 1 2025
Although there are relatively few diverse, high-quality medical imaging datasets on which to train computer vision artificial intelligence models, even fewer datasets contain expertly classified observations that can be repurposed to train or test such models. The traditional annotation process is laborious and time-consuming. Repurposing annotations and consolidating similar types of annotations from disparate sources has never been practical. Until recently, the use of natural language processing to convert a clinical radiology report into labels required custom training of a language model for each use case. Newer technologies such as large language models have made it possible to generate accurate and normalized labels at scale, using only clinical reports and specific prompt engineering. The combination of automatically generated labels extracted and normalized from reports in conjunction with foundational image models provides a means to create labels for model training. This article provides a short history and review of the annotation and labeling process of medical images, from the traditional manual methods to the newest semiautomated methods that provide a more scalable solution for creating useful models more efficiently. <b>Keywords:</b> Feature Detection, Diagnosis, Semi-supervised Learning © RSNA, 2025.

Medical image translation with deep learning: Advances, datasets and perspectives.

Chen J, Ye Z, Zhang R, Li H, Fang B, Zhang LB, Wang W

pubmed logopapersJul 1 2025
Traditional medical image generation often lacks patient-specific clinical information, limiting its clinical utility despite enhancing downstream task performance. In contrast, medical image translation precisely converts images from one modality to another, preserving both anatomical structures and cross-modal features, thus enabling efficient and accurate modality transfer and offering unique advantages for model development and clinical practice. This paper reviews the latest advancements in deep learning(DL)-based medical image translation. Initially, it elaborates on the diverse tasks and practical applications of medical image translation. Subsequently, it provides an overview of fundamental models, including convolutional neural networks (CNNs), transformers, and state space models (SSMs). Additionally, it delves into generative models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), Autoregressive Models (ARs), diffusion Models, and flow Models. Evaluation metrics for assessing translation quality are discussed, emphasizing their importance. Commonly used datasets in this field are also analyzed, highlighting their unique characteristics and applications. Looking ahead, the paper identifies future trends, challenges, and proposes research directions and solutions in medical image translation. It aims to serve as a valuable reference and inspiration for researchers, driving continued progress and innovation in this area.

Patient radiation safety in the intensive care unit.

Quaia E

pubmed logopapersJul 1 2025
The aim of this commentary review was to summarize the main research evidences on radiation exposure and to underline the best clinical and radiological practices to limit radiation exposure in ICU patients. Radiological imaging is essential for management of patients in the ICU despite the risk of ionizing radiation exposure in monitoring critically ill patients, especially in those with prolonged hospitalization. In optimizing radiation exposure reduction for ICU patients, multiple parties and professionals must be considered, including hospital management, clinicians, radiographers, and radiologists. Modified diagnostic reference levels for ICU patients, based on UK guidance, may be proposed, especially considering the frequent repetition of x-ray diagnostic procedures in ICU patients. Best practices may reduce radiation exposure in ICU patients with particular emphasis on justification and radiation exposure optimization in conventional radiology, interventional radiology and fluoroscopy, CT, and nuclear medicine. CT contributes most predominately to radiation exposure in ICU patients. Low-dose (<1 mSv in effective dose) or even ultra-low-dose CT protocols, iterative reconstruction algorithms, and artificial intelligence-based innovative dose-reduction strategies could reduce radiation exposure and related oncogenic risks.

Magnetic resonance imaging of cruciate ligament disorders: current updates.

Yang T, Li Y, Yang L, Liu Q

pubmed logopapersJul 1 2025
While conventional structural magnetic resonance imaging (MRI) can detect cruciate ligament anatomy and injuries, it has inherent limitations. Recently, novel MRI technologies such as quantitative MRI and artificial intelligence (AI) have emerged to mitigate these shortcomings, providing critical quantitative insights beyond gross morphological imaging and poised to expand current knowledge in assessing cruciate ligament injuries and to facilitate clinical decision making. Quantitative MRI serves as a noninvasive histological and quantification tool, which significantly improves the evaluation of degeneration and repair processes. AI plays a crucial role in automating radiological estimations and enabling data-driven predictions of future events. Despite the transformative impact of advanced MRI techniques on the analytical and diagnostic algorithms related to cruciate ligament disorders, future efforts are warranted to address challenges such as economic burdens and ethical considerations.
Page 17 of 32311 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.