Sort by:
Page 17 of 17168 results

Phenotype-Guided Generative Model for High-Fidelity Cardiac MRI Synthesis: Advancing Pretraining and Clinical Applications

Ziyu Li, Yujian Hu, Zhengyao Ding, Yiheng Mao, Haitao Li, Fan Yi, Hongkun Zhang, Zhengxing Huang

arxiv logopreprintMay 6 2025
Cardiac Magnetic Resonance (CMR) imaging is a vital non-invasive tool for diagnosing heart diseases and evaluating cardiac health. However, the limited availability of large-scale, high-quality CMR datasets poses a major challenge to the effective application of artificial intelligence (AI) in this domain. Even the amount of unlabeled data and the health status it covers are difficult to meet the needs of model pretraining, which hinders the performance of AI models on downstream tasks. In this study, we present Cardiac Phenotype-Guided CMR Generation (CPGG), a novel approach for generating diverse CMR data that covers a wide spectrum of cardiac health status. The CPGG framework consists of two stages: in the first stage, a generative model is trained using cardiac phenotypes derived from CMR data; in the second stage, a masked autoregressive diffusion model, conditioned on these phenotypes, generates high-fidelity CMR cine sequences that capture both structural and functional features of the heart in a fine-grained manner. We synthesized a massive amount of CMR to expand the pretraining data. Experimental results show that CPGG generates high-quality synthetic CMR data, significantly improving performance on various downstream tasks, including diagnosis and cardiac phenotypes prediction. These gains are demonstrated across both public and private datasets, highlighting the effectiveness of our approach. Code is availabel at https://anonymous.4open.science/r/CPGG.

Deep Learning-Based CT-Less Cardiac Segmentation of PET Images: A Robust Methodology for Multi-Tracer Nuclear Cardiovascular Imaging.

Salimi Y, Mansouri Z, Nkoulou R, Mainta I, Zaidi H

pubmed logopapersMay 6 2025
Quantitative cardiovascular PET/CT imaging is useful in the diagnosis of multiple cardiac perfusion and motion pathologies. The common approach for cardiac segmentation consists in using co-registered CT images, exploiting publicly available deep learning (DL)-based segmentation models. However, the mismatch between structural CT images and PET uptake limits the usefulness of these approaches. Besides, the performance of DL models is not consistent over low-dose or ultra-low-dose CT images commonly used in clinical PET/CT imaging. In this work, we developed a DL-based methodology to tackle this issue by segmenting directly cardiac PET images. This study included 406 cardiac PET images from 146 patients (43 <sup>18</sup>F-FDG, 329 <sup>13</sup>N-NH<sub>3</sub>, and 37 <sup>82</sup>Rb images). Using previously trained DL nnU-Net models in our group, we segmented the whole heart and the three main cardiac components, namely the left myocardium (LM), left ventricle cavity (LV), and right ventricle (RV) on co-registered CT images. The segmentation was resampled to PET resolution and edited through a combination of automated image processing and manual correction. The corrected segmentation masks and SUV PET images were fed to a nnU-Net V2 pipeline to be trained in fivefold data split strategy by defining two tasks: task #1 for whole cardiac segmentation and task #2 for segmentation of three cardiac components. Fifteen cardiac images were used as external validation set. The DL delineated masks were compared with standard of reference masks using Dice coefficient, Jaccard distance, mean surface distance, and segment volume relative error (%). Task #1 average Dice coefficient in internal validation fivefold was 0.932 ± 0.033. The average Dice on the 15 external cases were comparable with the fivefold Dice reaching an average of 0.941 ± 0.018. Task #2 average Dice in fivefold validation was 0.88 ± 0.063, 0.828 ± 0.091, and 0.876 ± 0.062 for LM, LV, and RV, respectively. There was no statistically significant difference among the Dice coefficients, neither between images acquired by three radiotracers nor between the different folds (P-values >  > 0.05). The overall average volume prediction error in cardiac components segmentation was less than 2%. We developed an automated DL-based segmentation pipeline to segment the whole heart and cardiac components with acceptable accuracy and robust performance in the external test set and over three radiotracers used in nuclear cardiovascular imaging. The proposed methodology can overcome unreliable segmentations performed on CT images.

Artificial intelligence-based echocardiography assessment to detect pulmonary hypertension.

Salehi M, Alabed S, Sharkey M, Maiter A, Dwivedi K, Yardibi T, Selej M, Hameed A, Charalampopoulos A, Kiely DG, Swift AJ

pubmed logopapersMay 1 2025
Tricuspid regurgitation jet velocity (TRJV) on echocardiography is used for screening patients with suspected pulmonary hypertension (PH). Artificial intelligence (AI) tools, such as the US2.AI, have been developed for automated evaluation of echocardiograms and can yield measurements that aid PH detection. This study evaluated the performance and utility of the US2.AI in a consecutive cohort of patients with suspected PH. 1031 patients who had been investigated for suspected PH between 2009-2021 were retrospectively identified from the ASPIRE registry. All patients had undergone echocardiography and right heart catheterisation (RHC). Based on RHC results, 771 (75%) patients with a mean pulmonary arterial pressure >20 mmHg were classified as having a diagnosis of PH (as per the 2022 European guidelines). Echocardiograms were evaluated manually and by the US2.AI tool to yield TRJV measurements. The AI tool demonstrated high interpretation yield, successfully measuring TRJV in 87% of echocardiograms. Manually and automatically derived TRJV values showed excellent agreement (intraclass correlation coefficient 0.94, 95% CI 0.94-0.95) with minimal bias (Bland-Altman analysis). Automated TRJV measurements showed equally high diagnostic accuracy for PH as manual measurements (area under the curve 0.88, 95% CI 0.84-0.90 <i>versus</i> 0.88, 95% CI 0.86-0.91). Automated TRJV measurements on echocardiography were similar to manual measurements, with similarly high and noninferior diagnostic accuracy for PH. These findings demonstrate that automated measurement of TRJV on echocardiography is feasible, accurate and reliable and support the implementation of AI-based approaches to echocardiogram evaluation and diagnostic imaging for PH.

Automated Bi-Ventricular Segmentation and Regional Cardiac Wall Motion Analysis for Rat Models of Pulmonary Hypertension.

Niglas M, Baxan N, Ashek A, Zhao L, Duan J, O'Regan D, Dawes TJW, Nien-Chen C, Xie C, Bai W, Zhao L

pubmed logopapersApr 1 2025
Artificial intelligence-based cardiac motion mapping offers predictive insights into pulmonary hypertension (PH) disease progression and its impact on the heart. We proposed an automated deep learning pipeline for bi-ventricular segmentation and 3D wall motion analysis in PH rodent models for bridging the clinical developments. A data set of 163 short-axis cine cardiac magnetic resonance scans were collected longitudinally from monocrotaline (MCT) and Sugen-hypoxia (SuHx) PH rats and used for training a fully convolutional network for automated segmentation. The model produced an accurate annotation in < 1 s for each scan (Dice metric > 0.92). High-resolution atlas fitting was performed to produce 3D cardiac mesh models and calculate the regional wall motion between end-diastole and end-systole. Prominent right ventricular hypokinesia was observed in PH rats (-37.7% ± 12.2 MCT; -38.6% ± 6.9 SuHx) compared to healthy controls, attributed primarily to the loss in basal longitudinal and apical radial motion. This automated bi-ventricular rat-specific pipeline provided an efficient and novel translational tool for rodent studies in alignment with clinical cardiac imaging AI developments.

Patients', clinicians' and developers' perspectives and experiences of artificial intelligence in cardiac healthcare: A qualitative study.

Baillie L, Stewart-Lord A, Thomas N, Frings D

pubmed logopapersJan 1 2025
This study investigated perspectives and experiences of artificial intelligence (AI) developers, clinicians and patients about the use of AI-based software in cardiac healthcare. A qualitative study took place at two hospitals in England that had trialled AI-based software use in stress echocardiography, a scan that uses ultrasound to assess heart function. Semi-structured interviews were conducted with: patients (<i>n = </i>9), clinicians (<i>n = </i>16) and AI software developers (<i>n = </i>5). Data were analysed using thematic analysis. Potential benefits identified were increasing consistency and reliability through reducing human error, and greater efficiency. Concerns included over-reliance on the AI technology, and data security. Participants discussed the need for human input and empathy within healthcare, transparency about AI use, and issues around trusting AI. Participants considered AI's role as assisting diagnosis but not replacing clinician involvement. Clinicians and patients emphasised holistic diagnosis that involves more than the scan. Clinicians considered their diagnostic ability as superior and discrepancies were managed in line with clinicians' diagnoses rather than AI reports. The practicalities of using the AI software concerned image acquisition to meet AI processing requirements and workflow integration. There was positivity towards AI use, but the AI software was considered an adjunct to clinicians rather than replacing their input. Clinicians' experiences were that their diagnostic ability remained superior to the AI, and acquiring images acceptable to AI was sometimes problematic. Despite hopes for increased efficiency through AI use, clinicians struggled to identify fit with clinical workflow to bring benefit.

A plaque recognition algorithm for coronary OCT images by Dense Atrous Convolution and attention mechanism.

Meng H, Zhao R, Zhang Y, Zhang B, Zhang C, Wang D, Sun J

pubmed logopapersJan 1 2025
Currently, plaque segmentation in Optical Coherence Tomography (OCT) images of coronary arteries is primarily carried out manually by physicians, and the accuracy of existing automatic segmentation techniques needs further improvement. To furnish efficient and precise decision support, automated detection of plaques in coronary OCT images holds paramount importance. For addressing these challenges, we propose a novel deep learning algorithm featuring Dense Atrous Convolution (DAC) and attention mechanism to realize high-precision segmentation and classification of Coronary artery plaques. Then, a relatively well-established dataset covering 760 original images, expanded to 8,000 using data enhancement. This dataset serves as a significant resource for future research endeavors. The experimental results demonstrate that the dice coefficients of calcified, fibrous, and lipid plaques are 0.913, 0.900, and 0.879, respectively, surpassing those generated by five other conventional medical image segmentation networks. These outcomes strongly attest to the effectiveness and superiority of our proposed algorithm in the task of automatic coronary artery plaque segmentation.

Investigating methods to enhance interpretability and performance in cardiac MRI for myocardial scarring diagnosis using convolutional neural network classification and One Match.

Udin MH, Armstrong S, Kai A, Doyle ST, Pokharel S, Ionita CN, Sharma UC

pubmed logopapersJan 1 2025
Machine learning (ML) classification of myocardial scarring in cardiac MRI is often hindered by limited explainability, particularly with convolutional neural networks (CNNs). To address this, we developed One Match (OM), an algorithm that builds on template matching to improve on both the explainability and performance of ML myocardial scaring classification. By incorporating OM, we aim to foster trust in AI models for medical diagnostics and demonstrate that improved interpretability does not have to compromise classification accuracy. Using a cardiac MRI dataset from 279 patients, this study evaluates One Match, which classifies myocardial scarring in images by matching each image to a set of labeled template images. It uses the highest correlation score from these matches for classification and is compared to a traditional sequential CNN. Enhancements such as autodidactic enhancement (AE) and patient-level classifications (PLCs) were applied to improve the predictive accuracy of both methods. Results are reported as follows: accuracy, sensitivity, specificity, precision, and F1-score. The highest classification performance was observed with the OM algorithm when enhanced by both AE and PLCs, 95.3% accuracy, 92.3% sensitivity, 96.7% specificity, 92.3% precision, and 92.3% F1-score, marking a significant improvement over the base configurations. AE alone had a positive impact on OM increasing accuracy from 89.0% to 93.2%, but decreased the accuracy of the CNN from 85.3% to 82.9%. In contrast, PLCs improved accuracy for both the CNN and OM, raising the CNN's accuracy by 4.2% and OM's by 7.4%. This study demonstrates the effectiveness of OM in classifying myocardial scars, particularly when enhanced with AE and PLCs. The interpretability of OM also enabled the examination of misclassifications, providing insights that could accelerate development and foster greater trust among clinical stakeholders.

Verity plots: A novel method of visualizing reliability assessments of artificial intelligence methods in quantitative cardiovascular magnetic resonance.

Hadler T, Ammann C, Saad H, Grassow L, Reisdorf P, Lange S, Däuber S, Schulz-Menger J

pubmed logopapersJan 1 2025
Artificial intelligence (AI) methods have established themselves in cardiovascular magnetic resonance (CMR) as automated quantification tools for ventricular volumes, function, and myocardial tissue characterization. Quality assurance approaches focus on measuring and controlling AI-expert differences but there is a need for tools that better communicate reliability and agreement. This study introduces the Verity plot, a novel statistical visualization that communicates the reliability of quantitative parameters (QP) with clear agreement criteria and descriptive statistics. Tolerance ranges for the acceptability of the bias and variance of AI-expert differences were derived from intra- and interreader evaluations. AI-expert agreement was defined by bias confidence and variance tolerance intervals being within bias and variance tolerance ranges. A reliability plot was designed to communicate this statistical test for agreement. Verity plots merge reliability plots with density and a scatter plot to illustrate AI-expert differences. Their utility was compared against Correlation, Box and Bland-Altman plots. Bias and variance tolerance ranges were established for volume, function, and myocardial tissue characterization QPs. Verity plots provided insights into statstistcal properties, outlier detection, and parametric test assumptions, outperforming Correlation, Box and Bland-Altman plots. Additionally, they offered a framework for determining the acceptability of AI-expert bias and variance. Verity plots offer markers for bias, variance, trends and outliers, in addition to deciding AI quantification acceptability. The plots were successfully applied to various AI methods in CMR and decisively communicated AI-expert agreement.
Page 17 of 17168 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.