Sort by:
Page 165 of 3973969 results

Data Extraction and Curation from Radiology Reports for Pancreatic Cyst Surveillance Using Large Language Models.

Choubey AP, Eguia E, Hollingsworth A, Chatterjee S, D'Angelica MI, Jarnagin WR, Wei AC, Schattner MA, Do RKG, Soares KC

pubmed logopapersJul 10 2025
Manual curation of radiographic features in pancreatic cyst registries for data abstraction and longitudinal evaluation is time consuming and limits widespread implementation. We examined the feasibility and accuracy of using large language models (LLMs) to extract clinical variables from radiology reports. A single center retrospective study included patients under surveillance for pancreatic cysts. Nine radiographic elements used to monitor cyst progression were included: cyst size, main pancreatic duct (MPD) size (continuous variable), number of lesions, MPD dilation ≥5mm (categorical), branch duct dilation, presence of solid component, calcific lesion, pancreatic atrophy, and pancreatitis. LLMs (GPT) on the OpenAI GPT-4 platform were employed to extract elements of interest with a zero-shot learning approach using prompting to facilitate annotation without any training data. A manually annotated institutional cyst database was used as the ground truth (GT) for comparison. Overall, 3198 longitudinal scans from 991 patients were included. GPT successfully extracted the selected radiographic elements with high accuracy. Among categorical variables, accuracy ranged from 97% for solid component to 99% for calcific lesions. In the continuous variables, accuracy varied from 92% for cyst size to 97% for MPD size. However, Cohen's Kappa was higher for cyst size (0.92) compared to MPD size (0.82). Lowest accuracy (81%) was noted in the multi-class variable for number of cysts. LLM can accurately extract and curate data from radiology reports for pancreatic cyst surveillance and can be reliably used to assemble longitudinal databases. Future application of this work may potentiate the development of artificial intelligence-based surveillance models.

Understanding Dataset Bias in Medical Imaging: A Case Study on Chest X-rays

Ethan Dack, Chengliang Dai

arxiv logopreprintJul 10 2025
Recent work has revisited the infamous task Name that dataset and established that in non-medical datasets, there is an underlying bias and achieved high Accuracies on the dataset origin task. In this work, we revisit the same task applied to popular open-source chest X-ray datasets. Medical images are naturally more difficult to release for open-source due to their sensitive nature, which has led to certain open-source datasets being extremely popular for research purposes. By performing the same task, we wish to explore whether dataset bias also exists in these datasets. % We deliberately try to increase the difficulty of the task by dataset transformations. We apply simple transformations of the datasets to try to identify bias. Given the importance of AI applications in medical imaging, it's vital to establish whether modern methods are taking shortcuts or are focused on the relevant pathology. We implement a range of different network architectures on the datasets: NIH, CheXpert, MIMIC-CXR and PadChest. We hope this work will encourage more explainable research being performed in medical imaging and the creation of more open-source datasets in the medical domain. The corresponding code will be released upon acceptance.

Artificial Intelligence for Low-Dose CT Lung Cancer Screening: Comparison of Utilization Scenarios.

Lee M, Hwang EJ, Lee JH, Nam JG, Lim WH, Park H, Park CM, Choi H, Park J, Goo JM

pubmed logopapersJul 10 2025
<b>BACKGROUND</b>. Artificial intelligence (AI) tools for evaluating low-dose CT (LDCT) lung cancer screening examinations are used predominantly for assisting radiologists' interpretations. Alternate utilization scenarios (e.g., use of AI as a prescreener or backup) warrant consideration. <b>OBJECTIVE</b>. The purpose of this study was to evaluate the impact of different AI utilization scenarios on diagnostic outcomes and interpretation times for LDCT lung cancer screening. <b>METHODS</b>. This retrospective study included 366 individuals (358 men, 8 women; mean age, 64 years) who underwent LDCT from May 2017 to December 2017 as part of an earlier prospective lung cancer screening trial. Examinations were interpreted by one of five readers, who reviewed their assigned cases in two sessions (with and without a commercial AI computer-aided detection tool). These interpretations were used to reconstruct simulated AI utilization scenarios: as an assistant (i.e., radiologists interpret all examinations with AI assistance), as a prescreener (i.e., radiologists only interpret examinations with a positive AI result), or as backup (i.e., radiologists reinterpret examinations when AI suggests a missed finding). A group of thoracic radiologists determined the reference standard. Diagnostic outcomes and mean interpretation times were assessed. Decision-curve analysis was performed. <b>RESULTS</b>. Compared with interpretation without AI (recall rate, 22.1%; per-nodule sensitivity, 64.2%; per-examination specificity, 88.8%; mean interpretation time, 164 seconds), AI as an assistant showed higher recall rate (30.3%; <i>p</i> < .001), lower per-examination specificity (81.1%), and no significant change in per-nodule sensitivity (64.8%; <i>p</i> = .86) or mean interpretation time (161 seconds; <i>p</i> = .48); AI as a prescreener showed lower recall rate (20.8%; <i>p</i> = .02) and mean interpretation time (143 seconds; <i>p</i> = .001), higher per-examination specificity (90.3%; <i>p</i> = .04), and no significant difference in per-nodule sensitivity (62.9%; <i>p</i> = .16); and AI as a backup showed increased recall rate (33.6%; <i>p</i> < .001), per-examination sensitivity (66.4%; <i>p</i> < .001), and mean interpretation time (225 seconds; <i>p</i> = .001), with lower per-examination specificity (79.9%; <i>p</i> < .001). Among scenarios, only AI as a prescreener demonstrated higher net benefit than interpretation without AI; AI as an assistant had the least net benefit. <b>CONCLUSION</b>. Different AI implementation approaches yield varying outcomes. The findings support use of AI as a prescreener as the preferred scenario. <b>CLINICAL IMPACT</b>. An approach whereby radiologists only interpret LDCT examinations with a positive AI result can reduce radiologists' workload while preserving sensitivity.

MeD-3D: A Multimodal Deep Learning Framework for Precise Recurrence Prediction in Clear Cell Renal Cell Carcinoma (ccRCC)

Hasaan Maqsood, Saif Ur Rehman Khan

arxiv logopreprintJul 10 2025
Accurate prediction of recurrence in clear cell renal cell carcinoma (ccRCC) remains a major clinical challenge due to the disease complex molecular, pathological, and clinical heterogeneity. Traditional prognostic models, which rely on single data modalities such as radiology, histopathology, or genomics, often fail to capture the full spectrum of disease complexity, resulting in suboptimal predictive accuracy. This study aims to overcome these limitations by proposing a deep learning (DL) framework that integrates multimodal data, including CT, MRI, histopathology whole slide images (WSI), clinical data, and genomic profiles, to improve the prediction of ccRCC recurrence and enhance clinical decision-making. The proposed framework utilizes a comprehensive dataset curated from multiple publicly available sources, including TCGA, TCIA, and CPTAC. To process the diverse modalities, domain-specific models are employed: CLAM, a ResNet50-based model, is used for histopathology WSIs, while MeD-3D, a pre-trained 3D-ResNet18 model, processes CT and MRI images. For structured clinical and genomic data, a multi-layer perceptron (MLP) is used. These models are designed to extract deep feature embeddings from each modality, which are then fused through an early and late integration architecture. This fusion strategy enables the model to combine complementary information from multiple sources. Additionally, the framework is designed to handle incomplete data, a common challenge in clinical settings, by enabling inference even when certain modalities are missing.

Patient-specific vs Multi-Patient Vision Transformer for Markerless Tumor Motion Forecasting

Gauthier Rotsart de Hertaing, Dani Manjah, Benoit Macq

arxiv logopreprintJul 10 2025
Background: Accurate forecasting of lung tumor motion is essential for precise dose delivery in proton therapy. While current markerless methods mostly rely on deep learning, transformer-based architectures remain unexplored in this domain, despite their proven performance in trajectory forecasting. Purpose: This work introduces a markerless forecasting approach for lung tumor motion using Vision Transformers (ViT). Two training strategies are evaluated under clinically realistic constraints: a patient-specific (PS) approach that learns individualized motion patterns, and a multi-patient (MP) model designed for generalization. The comparison explicitly accounts for the limited number of images that can be generated between planning and treatment sessions. Methods: Digitally reconstructed radiographs (DRRs) derived from planning 4DCT scans of 31 patients were used to train the MP model; a 32nd patient was held out for evaluation. PS models were trained using only the target patient's planning data. Both models used 16 DRRs per input and predicted tumor motion over a 1-second horizon. Performance was assessed using Average Displacement Error (ADE) and Final Displacement Error (FDE), on both planning (T1) and treatment (T2) data. Results: On T1 data, PS models outperformed MP models across all training set sizes, especially with larger datasets (up to 25,000 DRRs, p < 0.05). However, MP models demonstrated stronger robustness to inter-fractional anatomical variability and achieved comparable performance on T2 data without retraining. Conclusions: This is the first study to apply ViT architectures to markerless tumor motion forecasting. While PS models achieve higher precision, MP models offer robust out-of-the-box performance, well-suited for time-constrained clinical settings.

GH-UNet: group-wise hybrid convolution-VIT for robust medical image segmentation.

Wang S, Li G, Gao M, Zhuo L, Liu M, Ma Z, Zhao W, Fu X

pubmed logopapersJul 10 2025
Medical image segmentation is vital for accurate diagnosis. While U-Net-based models are effective, they struggle to capture long-range dependencies in complex anatomy. We propose GH-UNet, a Group-wise Hybrid Convolution-ViT model within the U-Net framework, to address this limitation. GH-UNet integrates a hybrid convolution-Transformer encoder for both local detail and global context modeling, a Group-wise Dynamic Gating (GDG) module for adaptive feature weighting, and a cascaded decoder for multi-scale integration. Both the encoder and GDG are modular, enabling compatibility with various CNN or ViT backbones. Extensive experiments on five public and one private dataset show GH-UNet consistently achieves superior performance. On ISIC2016, it surpasses H2Former with 1.37% and 1.94% gains in DICE and IOU, respectively, using only 38% of the parameters and 49.61% of the FLOPs. The code is freely accessible via: https://github.com/xiachashuanghua/GH-UNet .

Breast Ultrasound Tumor Generation via Mask Generator and Text-Guided Network:A Clinically Controllable Framework with Downstream Evaluation

Haoyu Pan, Hongxin Lin, Zetian Feng, Chuxuan Lin, Junyang Mo, Chu Zhang, Zijian Wu, Yi Wang, Qingqing Zheng

arxiv logopreprintJul 10 2025
The development of robust deep learning models for breast ultrasound (BUS) image analysis is significantly constrained by the scarcity of expert-annotated data. To address this limitation, we propose a clinically controllable generative framework for synthesizing BUS images. This framework integrates clinical descriptions with structural masks to generate tumors, enabling fine-grained control over tumor characteristics such as morphology, echogencity, and shape. Furthermore, we design a semantic-curvature mask generator, which synthesizes structurally diverse tumor masks guided by clinical priors. During inference, synthetic tumor masks serve as input to the generative framework, producing highly personalized synthetic BUS images with tumors that reflect real-world morphological diversity. Quantitative evaluations on six public BUS datasets demonstrate the significant clinical utility of our synthetic images, showing their effectiveness in enhancing downstream breast cancer diagnosis tasks. Furthermore, visual Turing tests conducted by experienced sonographers confirm the realism of the generated images, indicating the framework's potential to support broader clinical applications.

Compressive Imaging Reconstruction via Tensor Decomposed Multi-Resolution Grid Encoding

Zhenyu Jin, Yisi Luo, Xile Zhao, Deyu Meng

arxiv logopreprintJul 10 2025
Compressive imaging (CI) reconstruction, such as snapshot compressive imaging (SCI) and compressive sensing magnetic resonance imaging (MRI), aims to recover high-dimensional images from low-dimensional compressed measurements. This process critically relies on learning an accurate representation of the underlying high-dimensional image. However, existing unsupervised representations may struggle to achieve a desired balance between representation ability and efficiency. To overcome this limitation, we propose Tensor Decomposed multi-resolution Grid encoding (GridTD), an unsupervised continuous representation framework for CI reconstruction. GridTD optimizes a lightweight neural network and the input tensor decomposition model whose parameters are learned via multi-resolution hash grid encoding. It inherently enjoys the hierarchical modeling ability of multi-resolution grid encoding and the compactness of tensor decomposition, enabling effective and efficient reconstruction of high-dimensional images. Theoretical analyses for the algorithm's Lipschitz property, generalization error bound, and fixed-point convergence reveal the intrinsic superiority of GridTD as compared with existing continuous representation models. Extensive experiments across diverse CI tasks, including video SCI, spectral SCI, and compressive dynamic MRI reconstruction, consistently demonstrate the superiority of GridTD over existing methods, positioning GridTD as a versatile and state-of-the-art CI reconstruction method.

Semi-supervised learning and integration of multi-sequence MR-images for carotid vessel wall and plaque segmentation

Marie-Christine Pali, Christina Schwaiger, Malik Galijasevic, Valentin K. Ladenhauf, Stephanie Mangesius, Elke R. Gizewski

arxiv logopreprintJul 10 2025
The analysis of carotid arteries, particularly plaques, in multi-sequence Magnetic Resonance Imaging (MRI) data is crucial for assessing the risk of atherosclerosis and ischemic stroke. In order to evaluate metrics and radiomic features, quantifying the state of atherosclerosis, accurate segmentation is important. However, the complex morphology of plaques and the scarcity of labeled data poses significant challenges. In this work, we address these problems and propose a semi-supervised deep learning-based approach designed to effectively integrate multi-sequence MRI data for the segmentation of carotid artery vessel wall and plaque. The proposed algorithm consists of two networks: a coarse localization model identifies the region of interest guided by some prior knowledge on the position and number of carotid arteries, followed by a fine segmentation model for precise delineation of vessel walls and plaques. To effectively integrate complementary information across different MRI sequences, we investigate different fusion strategies and introduce a multi-level multi-sequence version of U-Net architecture. To address the challenges of limited labeled data and the complexity of carotid artery MRI, we propose a semi-supervised approach that enforces consistency under various input transformations. Our approach is evaluated on 52 patients with arteriosclerosis, each with five MRI sequences. Comprehensive experiments demonstrate the effectiveness of our approach and emphasize the role of fusion point selection in U-Net-based architectures. To validate the accuracy of our results, we also include an expert-based assessment of model performance. Our findings highlight the potential of fusion strategies and semi-supervised learning for improving carotid artery segmentation in data-limited MRI applications.

Attend-and-Refine: Interactive keypoint estimation and quantitative cervical vertebrae analysis for bone age assessment

Jinhee Kim, Taesung Kim, Taewoo Kim, Dong-Wook Kim, Byungduk Ahn, Yoon-Ji Kim, In-Seok Song, Jaegul Choo

arxiv logopreprintJul 10 2025
In pediatric orthodontics, accurate estimation of growth potential is essential for developing effective treatment strategies. Our research aims to predict this potential by identifying the growth peak and analyzing cervical vertebra morphology solely through lateral cephalometric radiographs. We accomplish this by comprehensively analyzing cervical vertebral maturation (CVM) features from these radiographs. This methodology provides clinicians with a reliable and efficient tool to determine the optimal timings for orthodontic interventions, ultimately enhancing patient outcomes. A crucial aspect of this approach is the meticulous annotation of keypoints on the cervical vertebrae, a task often challenged by its labor-intensive nature. To mitigate this, we introduce Attend-and-Refine Network (ARNet), a user-interactive, deep learning-based model designed to streamline the annotation process. ARNet features Interaction-guided recalibration network, which adaptively recalibrates image features in response to user feedback, coupled with a morphology-aware loss function that preserves the structural consistency of keypoints. This novel approach substantially reduces manual effort in keypoint identification, thereby enhancing the efficiency and accuracy of the process. Extensively validated across various datasets, ARNet demonstrates remarkable performance and exhibits wide-ranging applicability in medical imaging. In conclusion, our research offers an effective AI-assisted diagnostic tool for assessing growth potential in pediatric orthodontics, marking a significant advancement in the field.
Page 165 of 3973969 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.