Sort by:
Page 163 of 1701698 results

Artificial intelligence applied to ultrasound diagnosis of pelvic gynecological tumors: a systematic review and meta-analysis.

Geysels A, Garofalo G, Timmerman S, Barreñada L, De Moor B, Timmerman D, Froyman W, Van Calster B

pubmed logopapersMay 8 2025
To perform a systematic review on artificial intelligence (AI) studies focused on identifying and differentiating pelvic gynecological tumors on ultrasound scans. Studies developing or validating AI models for diagnosing gynecological pelvic tumors on ultrasound scans were eligible for inclusion. We systematically searched PubMed, Embase, Web of Science, and Cochrane Central from their database inception until April 30th, 2024. To assess the quality of the included studies, we adapted the QUADAS-2 risk of bias tool to address the unique challenges of AI in medical imaging. Using multi-level random effects models, we performed a meta-analysis to generate summary estimates of the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. To provide a reference point of current diagnostic support tools for ultrasound examiners, we descriptively compared the pooled performance to that of the well-recognized ADNEX model on external validation. Subgroup analyses were performed to explore sources of heterogeneity. From 9151 records retrieved, 44 studies were eligible: 40 on ovarian, three on endometrial, and one on myometrial pathology. Overall, 95% were at high risk of bias - primarily due to inappropriate study inclusion criteria, the absence of a patient-level split of training and testing image sets, and no calibration assessment. For ovarian tumors, the summary AUC for AI models distinguishing benign from malignant tumors was 0.89 (95% CI: 0.85-0.92). In lower-risk studies (at least three low-risk domains), the summary AUC dropped to 0.87 (0.83-0.90), with deep learning models outperforming radiomics-based machine learning approaches in this subset. Only five studies included an external validation, and six evaluated calibration performance. In a recent systematic review of external validation studies, the ADNEX model had a pooled AUC of 0.93 (0.91-0.94) in studies at low risk of bias. Studies on endometrial and myometrial pathologies were reported individually. Although AI models show promising discriminative performances for diagnosing gynecological tumors on ultrasound, most studies have methodological shortcomings that result in a high risk of bias. In addition, the ADNEX model appears to outperform most AI approaches for ovarian tumors. Future research should emphasize robust study designs - ideally large, multicenter, and prospective cohorts that mirror real-world populations - along with external validation, proper calibration, and standardized reporting. This study was pre-registered with Open Science Framework (OSF): https://doi.org/10.17605/osf.io/bhkst.

Are Diffusion Models Effective Good Feature Extractors for MRI Discriminative Tasks?

Li B, Sun Z, Li C, Kamagata K, Andica C, Uchida W, Takabayashi K, Guo S, Zou R, Aoki S, Tanaka T, Zhao Q

pubmed logopapersMay 8 2025
Diffusion models (DMs) excel in pixel-level and spatial tasks and are proven feature extractors for 2D image discriminative tasks when pretrained. However, their capabilities in 3D MRI discriminative tasks remain largely untapped. This study seeks to assess the effectiveness of DMs in this underexplored area. We use 59830 T1-weighted MR images (T1WIs) from the extensive, yet unlabeled, UK Biobank dataset. Additionally, we apply 369 T1WIs from the BraTS2020 dataset specifically for brain tumor classification, and 421 T1WIs from the ADNI1 dataset for the diagnosis of Alzheimer's disease. Firstly, a high-performing denoising diffusion probabilistic model (DDPM) with a U-Net backbone is pretrained on the UK Biobank, then fine-tuned on the BraTS2020 and ADNI1 datasets. Afterward, we assess its feature representation capabilities for discriminative tasks using linear probes. Finally, we accordingly introduce a novel fusion module, named CATS, that enhances the U-Net representations, thereby improving performance on discriminative tasks. Our DDPM produces synthetic images of high quality that match the distribution of the raw datasets. Subsequent analysis reveals that DDPM features extracted from middle blocks and smaller timesteps are of high quality. Leveraging these features, the CATS module, with just 1.7M additional parameters, achieved average classification scores of 0.7704 and 0.9217 on the BraTS2020 and ADNI1 datasets, demonstrating competitive performance with that of the representations extracted from the transferred DDPM model, as well as the 33.23M parameters ResNet18 trained from scratch. We have found that pretraining a DM on a large-scale dataset and then fine-tuning it on limited data from discriminative datasets is a viable approach for MRI data. With these well-performing DMs, we show that they excel not just in generation tasks but also as feature extractors when combined with our proposed CATS module.

Multimodal Integration of Plasma, MRI, and Genetic Risk for Cerebral Amyloid Prediction

yichen, w., Chen, H., yuxin, C., Yuyan, C., shiyun, Z., Kexin, W., Yidong, J., Tianyu, B., Yanxi, H., MingKai, Z., Chengxiang, Y., Guozheng, F., Weijie, H., Ni, S., Ying, H.

medrxiv logopreprintMay 8 2025
Accurate estimation of cerebral amyloid-{beta} (A{beta}) burden is critical for early detection and risk stratification in Alzheimers disease (AD). While A{beta} positron emission tomography (PET) remains the gold standard, its high cost, invasive nature and limited accessibility hinder broad clinical application. Blood-based biomarkers offer a non-invasive and cost-effective alternative, but their standalone predictive accuracy remains limited due to biological heterogeneity and limited reflection of central nervous system pathology. Here, we present a high-precision, multimodal prediction machine learning model that integrates plasma biomarkers, brain structural magnetic resonance imaging (sMRI) features, diffusion tensor imaging (DTI)-derived structural connectomes, and genetic risk profiles. The model was trained on 150 participants from the Alzheimers Disease Neuroimaging Initiative (ADNI) and externally validated on 111 participants from the SILCODE cohort. Multimodal integration substantially improved A{beta} prediction, with R{superscript 2} increasing from 0.515 using plasma biomarkers alone to 0.637 when adding imaging and genetic features. These results highlight the potential of this multimodal machine learning approach as a scalable, non-invasive, and economically viable alternative to PET for estimating A{beta} burden.

Robust Computation of Subcortical Functional Connectivity Guided by Quantitative Susceptibility Mapping: An Application in Parkinson's Disease Diagnosis.

Qin J, Wu H, Wu C, Guo T, Zhou C, Duanmu X, Tan S, Wen J, Zheng Q, Yuan W, Zhu Z, Chen J, Wu J, He C, Ma Y, Liu C, Xu X, Guan X, Zhang M

pubmed logopapersMay 8 2025
Previous resting state functional MRI (rs-fMRI) analyses of the basal ganglia in Parkinson's disease heavily relied on T1-weighted imaging (T1WI) atlases. However, subcortical structures are characterized by subtle contrast differences, making their accurate delineation challenging on T1WI. In this study, we aimed to introduce and validate a method that incorporates quantitative susceptibility mapping (QSM) into the rs-fMRI analytical pipeline to achieve precise subcortical nuclei segmentation and improve the stability of RSFC measurements in Parkinson's disease. A total of 321 participants (148 patients with Parkinson's Disease and 173 normal controls) were enrolled. We performed cross-modal registration at the individual level for rs-fMRI to QSM (FUNC2QSM) and T1WI (FUNC2T1), respectively.The consistency and accuracy of resting state functional connectivity (RSFC) measurements in two registration approaches were assessed by intraclass correlation coefficient and mutual information. Bootstrap analysis was performed to validate the stability of the RSFC differences between Parkinson's disease and normal controls. RSFC-based machine learning models were constructed for Parkinson's disease classification, using optimized hyperparameters (RandomizedSearchCV with 5-fold cross-validation). The consistency of RSFC measurements between the two registration methods was poor, whereas the QSM-guided approach showed better mutual information values, suggesting higher registration accuracy. The disruptions of RSFC identified with the QSM-guided approach were more stable and reliable, as confirmed by bootstrap analysis. In classification models, the QSM-guided method consistently outperformed the T1WI-guided method, achieving higher test-set ROC-AUC values (FUNC2QSM: 0.87-0.90, FUNC2T1: 0.67-0.70). The QSM-guided approach effectively enhanced the accuracy of subcortical segmentation and the stability of RSFC measurement, thus facilitating future biomarker development in Parkinson's disease.

Hierarchical diagnosis of breast phyllodes tumors enabled by deep learning of ultrasound images: a retrospective multi-center study.

Yan Y, Liu Y, Wang Y, Jiang T, Xie J, Zhou Y, Liu X, Yan M, Zheng Q, Xu H, Chen J, Sui L, Chen C, Ru R, Wang K, Zhao A, Li S, Zhu Y, Zhang Y, Wang VY, Xu D

pubmed logopapersMay 8 2025
Phyllodes tumors (PTs) are rare breast tumors with high recurrence rates, current methods relying on post-resection pathology often delay detection and require further surgery. We propose a deep-learning-based Phyllodes Tumors Hierarchical Diagnosis Model (PTs-HDM) for preoperative identification and grading. Ultrasound images from five hospitals were retrospectively collected, with all patients having undergone surgical pathological confirmation of either PTs or fibroadenomas (FAs). PTs-HDM follows a two-stage classification: first distinguishing PTs from FAs, then grading PTs into benign or borderline/malignant. Model performance metrics including AUC and accuracy were quantitatively evaluated. A comparative analysis was conducted between the algorithm's diagnostic capabilities and those of radiologists with varying clinical experience within an external validation cohort. Through the provision of PTs-HDM's automated classification outputs and associated thermal activation mapping guidance, we systematically assessed the enhancement in radiologists' diagnostic concordance and classification accuracy. A total of 712 patients were included. On the external test set, PTs-HDM achieved an AUC of 0.883, accuracy of 87.3% for PT vs. FA classification. Subgroup analysis showed high accuracy for tumors < 2 cm (90.9%). In hierarchical classification, the model obtained an AUC of 0.856 and accuracy of 80.9%. Radiologists' performance improved with PTs-HDM assistance, with binary classification accuracy increasing from 82.7%, 67.7%, and 64.2-87.6%, 76.6%, and 82.1% for senior, attending, and resident radiologists, respectively. Their hierarchical classification AUCs improved from 0.566 to 0.827 to 0.725-0.837. PTs-HDM also enhanced inter-radiologist consistency, increasing Kappa values from - 0.05 to 0.41 to 0.12 to 0.65, and the intraclass correlation coefficient from 0.19 to 0.45. PTs-HDM shows strong diagnostic performance, especially for small lesions, and improves radiologists' accuracy across all experience levels, bridging diagnostic gaps and providing reliable support for PTs' hierarchical diagnosis.

Machine learning-based approaches for distinguishing viral and bacterial pneumonia in paediatrics: A scoping review.

Rickard D, Kabir MA, Homaira N

pubmed logopapersMay 8 2025
Pneumonia is the leading cause of hospitalisation and mortality among children under five, particularly in low-resource settings. Accurate differentiation between viral and bacterial pneumonia is essential for guiding appropriate treatment, yet it remains challenging due to overlapping clinical and radiographic features. Advances in machine learning (ML), particularly deep learning (DL), have shown promise in classifying pneumonia using chest X-ray (CXR) images. This scoping review summarises the evidence on ML techniques for classifying viral and bacterial pneumonia using CXR images in paediatric patients. This scoping review was conducted following the Joanna Briggs Institute methodology and the PRISMA-ScR guidelines. A comprehensive search was performed in PubMed, Embase, and Scopus to identify studies involving children (0-18 years) with pneumonia diagnosed through CXR, using ML models for binary or multiclass classification. Data extraction included ML models, dataset characteristics, and performance metrics. A total of 35 studies, published between 2018 and 2025, were included in this review. Of these, 31 studies used the publicly available Kermany dataset, raising concerns about overfitting and limited generalisability to broader, real-world clinical populations. Most studies (n=33) used convolutional neural networks (CNNs) for pneumonia classification. While many models demonstrated promising performance, significant variability was observed due to differences in methodologies, dataset sizes, and validation strategies, complicating direct comparisons. For binary classification (viral vs bacterial pneumonia), a median accuracy of 92.3% (range: 80.8% to 97.9%) was reported. For multiclass classification (healthy, viral pneumonia, and bacterial pneumonia), the median accuracy was 91.8% (range: 76.8% to 99.7%). Current evidence is constrained by a predominant reliance on a single dataset and variability in methodologies, which limit the generalisability and clinical applicability of findings. To address these limitations, future research should focus on developing diverse and representative datasets while adhering to standardised reporting guidelines. Such efforts are essential to improve the reliability, reproducibility, and translational potential of machine learning models in clinical settings.

MRI-based machine learning reveals proteasome subunit PSMB8-mediated malignant glioma phenotypes through activating TGFBR1/2-SMAD2/3 axis.

Pei D, Ma Z, Qiu Y, Wang M, Wang Z, Liu X, Zhang L, Zhang Z, Li R, Yan D

pubmed logopapersMay 8 2025
Gliomas are the most prevalent and aggressive neoplasms of the central nervous system, representing a major challenge for effective treatment and patient prognosis. This study identifies the proteasome subunit beta type-8 (PSMB8/LMP7) as a promising prognostic biomarker for glioma. Using a multiparametric radiomic model derived from preoperative magnetic resonance imaging (MRI), we accurately predicted PSMB8 expression levels. Notably, radiomic prediction of poor prognosis was highly consistent with elevated PSMB8 expression. Our findings demonstrate that PSMB8 depletion not only suppressed glioma cell proliferation and migration but also induced apoptosis via activation of the transforming growth factor beta (TGF-β) signaling pathway. This was supported by downregulation of key receptors (TGFBR1 and TGFBR2). Furthermore, interference with PSMB8 expression impaired phosphorylation and nuclear translocation of SMAD2/3, critical mediators of TGF-β signaling. Consequently, these molecular alterations resulted in reduced tumor progression and enhanced sensitivity to temozolomide (TMZ), a standard chemotherapeutic agent. Overall, our findings highlight PSMB8's pivotal role in glioma pathophysiology and its potential as a prognostic marker. This study also demonstrates the clinical utility of MRI radiomics for preoperative risk stratification and pre-diagnosis. Targeted inhibition of PSMB8 may represent a therapeutic strategy to overcome TMZ resistance and improve glioma patient outcomes.

Impact of spectrum bias on deep learning-based stroke MRI analysis.

Krag CH, Müller FC, Gandrup KL, Plesner LL, Sagar MV, Andersen MB, Nielsen M, Kruuse C, Boesen M

pubmed logopapersMay 8 2025
To evaluate spectrum bias in stroke MRI analysis by excluding cases with uncertain acute ischemic lesions (AIL) and examining patient, imaging, and lesion factors associated with these cases. This single-center retrospective observational study included adults with brain MRIs for suspected stroke between January 2020 and April 2022. Diagnostic uncertain AIL were identified through reader disagreement or low certainty grading by a radiology resident, a neuroradiologist, and the original radiology report consisting of various neuroradiologists. A commercially available deep learning tool analyzing brain MRIs for AIL was evaluated to assess the impact of excluding uncertain cases on diagnostic odds ratios. Patient-related, MRI acquisition-related, and lesion-related factors were analyzed using the Wilcoxon rank sum test, χ2 test, and multiple logistic regression. The study was approved by the National Committee on Health Research Ethics. In 989 patients (median age 73 (IQR: 59-80), 53% female), certain AIL were found in 374 (38%), uncertain AIL in 63 (6%), and no AIL in 552 (56%). Excluding uncertain cases led to a four-fold increase in the diagnostic odds ratio (from 68 to 278), while a simulated case-control design resulted in a six-fold increase compared to the full disease spectrum (from 68 to 431). Independent factors associated with uncertain AIL were MRI artifacts, smaller lesion size, older lesion age, and infratentorial location. Excluding uncertain cases leads to a four-fold overestimation of the diagnostic odds ratio. MRI artifacts, smaller lesion size, infratentorial location, and older lesion age are associated with uncertain AIL and should be accounted for in validation studies.

Cross-scale prediction of glioblastoma MGMT methylation status based on deep learning combined with magnetic resonance images and pathology images

Wu, X., Wei, W., Li, Y., Ma, M., Hu, Z., Xu, Y., Hu, W., Chen, G., Zhao, R., Kang, X., Yin, H., Xi, Y.

medrxiv logopreprintMay 8 2025
BackgroundIn glioblastoma (GBM), promoter methylation of the O6-methylguanine-DNA methyltransferase (MGMT) is associated with beneficial chemotherapy but has not been accurately evaluated based on radiological and pathological sections. To develop and validate an MRI and pathology image-based deep learning radiopathomics model for predicting MGMT promoter methylation in patients with GBM. MethodsA retrospective collection of pathologically confirmed isocitrate dehydrogenase (IDH) wild-type GBM patients (n=207) from three centers was performed, all of whom underwent MRI scanning within 2 weeks prior to surgery. The pre-trained ResNet50 was used as the feature extractor. Features of 1024 dimensions were extracted from MRI and pathological images, respectively, and the features were screened for modeling. Then feature fusion was performed by calculating the normalized multimode MRI fusion features and pathological features, and prediction models of MGMT based on deep learning radiomics, pathomics, and radiopathomics (DLRM, DLPM, DLRPM) were constructed and applied to internal and external validation cohorts. ResultsIn the training, internal and external validation cohorts, the DLRPM further improved the predictive performance, with a significantly better predictive performance than the DLRM and DLPM, with AUCs of 0.920 (95% CI 0.870-0.968), 0.854 (95% CI 0.702-1), and 0.840 (95% CI 0.625-1). ConclusionWe developed and validated cross-scale radiology and pathology models for predicting MGMT methylation status, with DLRPM predicting the best performance, and this cross-scale approach paves the way for further research and clinical applications in the future.

Radiomics-based machine learning in prediction of response to neoadjuvant chemotherapy in osteosarcoma: A systematic review and meta-analysis.

Salimi M, Houshi S, Gholamrezanezhad A, Vadipour P, Seifi S

pubmed logopapersMay 8 2025
Osteosarcoma (OS) is the most common primary bone malignancy, and neoadjuvant chemotherapy (NAC) improves survival rates. However, OS heterogeneity results in variable treatment responses, highlighting the need for reliable, non-invasive tools to predict NAC response. Radiomics-based machine learning (ML) offers potential for identifying imaging biomarkers to predict treatment outcomes. This systematic review and meta-analysis evaluated the accuracy and reliability of radiomics models for predicting NAC response in OS. A systematic search was conducted in PubMed, Embase, Scopus, and Web of Science up to November 2024. Studies using radiomics-based ML for NAC response prediction in OS were included. Pooled sensitivity, specificity, and AUC for training and validation cohorts were calculated using bivariate random-effects modeling, with clinical-combined models analyzed separately. Quality assessment was performed using the QUADAS-2 tool, radiomics quality score (RQS), and METRICS scores. Sixteen studies were included, with 63 % using MRI and 37 % using CT. Twelve studies, comprising 1639 participants, were included in the meta-analysis. Pooled metrics for training cohorts showed an AUC of 0.93, sensitivity of 0.89, and specificity of 0.85. Validation cohorts achieved an AUC of 0.87, sensitivity of 0.81, and specificity of 0.82. Clinical-combined models outperformed radiomics-only models. The mean RQS score was 9.44 ± 3.41, and the mean METRICS score was 60.8 % ± 17.4 %. Radiomics-based ML shows promise for predicting NAC response in OS, especially when combined with clinical indicators. However, limitations in external validation and methodological consistency must be addressed.
Page 163 of 1701698 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.