Sort by:
Page 163 of 2442432 results

Open Set Recognition for Endoscopic Image Classification: A Deep Learning Approach on the Kvasir Dataset

Kasra Moazzami, Seoyoun Son, John Lin, Sun Min Lee, Daniel Son, Hayeon Lee, Jeongho Lee, Seongji Lee

arxiv logopreprintJun 23 2025
Endoscopic image classification plays a pivotal role in medical diagnostics by identifying anatomical landmarks and pathological findings. However, conventional closed-set classification frameworks are inherently limited in open-world clinical settings, where previously unseen conditions can arise andcompromise model reliability. To address this, we explore the application of Open Set Recognition (OSR) techniques on the Kvasir dataset, a publicly available and diverse endoscopic image collection. In this study, we evaluate and compare the OSR capabilities of several representative deep learning architectures, including ResNet-50, Swin Transformer, and a hybrid ResNet-Transformer model, under both closed-set and open-set conditions. OpenMax is adopted as a baseline OSR method to assess the ability of these models to distinguish known classes from previously unseen categories. This work represents one of the first efforts to apply open set recognition to the Kvasir dataset and provides a foundational benchmark for evaluating OSR performance in medical image analysis. Our results offer practical insights into model behavior in clinically realistic settings and highlight the importance of OSR techniques for the safe deployment of AI systems in endoscopy.

MOSCARD -- Causal Reasoning and De-confounding for Multimodal Opportunistic Screening of Cardiovascular Adverse Events

Jialu Pi, Juan Maria Farina, Rimita Lahiri, Jiwoong Jeong, Archana Gurudu, Hyung-Bok Park, Chieh-Ju Chao, Chadi Ayoub, Reza Arsanjani, Imon Banerjee

arxiv logopreprintJun 23 2025
Major Adverse Cardiovascular Events (MACE) remain the leading cause of mortality globally, as reported in the Global Disease Burden Study 2021. Opportunistic screening leverages data collected from routine health check-ups and multimodal data can play a key role to identify at-risk individuals. Chest X-rays (CXR) provide insights into chronic conditions contributing to major adverse cardiovascular events (MACE), while 12-lead electrocardiogram (ECG) directly assesses cardiac electrical activity and structural abnormalities. Integrating CXR and ECG could offer a more comprehensive risk assessment than conventional models, which rely on clinical scores, computed tomography (CT) measurements, or biomarkers, which may be limited by sampling bias and single modality constraints. We propose a novel predictive modeling framework - MOSCARD, multimodal causal reasoning with co-attention to align two distinct modalities and simultaneously mitigate bias and confounders in opportunistic risk estimation. Primary technical contributions are - (i) multimodal alignment of CXR with ECG guidance; (ii) integration of causal reasoning; (iii) dual back-propagation graph for de-confounding. Evaluated on internal, shift data from emergency department (ED) and external MIMIC datasets, our model outperformed single modality and state-of-the-art foundational models - AUC: 0.75, 0.83, 0.71 respectively. Proposed cost-effective opportunistic screening enables early intervention, improving patient outcomes and reducing disparities.

Multimodal deep learning for predicting neoadjuvant treatment outcomes in breast cancer: a systematic review.

Krasniqi E, Filomeno L, Arcuri T, Ferretti G, Gasparro S, Fulvi A, Roselli A, D'Onofrio L, Pizzuti L, Barba M, Maugeri-Saccà M, Botti C, Graziano F, Puccica I, Cappelli S, Pelle F, Cavicchi F, Villanucci A, Paris I, Calabrò F, Rea S, Costantini M, Perracchio L, Sanguineti G, Takanen S, Marucci L, Greco L, Kayal R, Moscetti L, Marchesini E, Calonaci N, Blandino G, Caravagna G, Vici P

pubmed logopapersJun 23 2025
Pathological complete response (pCR) to neoadjuvant systemic therapy (NAST) is an established prognostic marker in breast cancer (BC). Multimodal deep learning (DL), integrating diverse data sources (radiology, pathology, omics, clinical), holds promise for improving pCR prediction accuracy. This systematic review synthesizes evidence on multimodal DL for pCR prediction and compares its performance against unimodal DL. Following PRISMA, we searched PubMed, Embase, and Web of Science (January 2015-April 2025) for studies applying DL to predict pCR in BC patients receiving NAST, using data from radiology, digital pathology (DP), multi-omics, and/or clinical records, and reporting AUC. Data on study design, DL architectures, and performance (AUC) were extracted. A narrative synthesis was conducted due to heterogeneity. Fifty-one studies, mostly retrospective (90.2%, median cohort 281), were included. Magnetic resonance imaging and DP were common primary modalities. Multimodal approaches were used in 52.9% of studies, often combining imaging with clinical data. Convolutional neural networks were the dominant architecture (88.2%). Longitudinal imaging improved prediction over baseline-only (median AUC 0.91 vs. 0.82). Overall, the median AUC across studies was 0.88, with 35.3% achieving AUC ≥ 0.90. Multimodal models showed a modest but consistent improvement over unimodal approaches (median AUC 0.88 vs. 0.83). Omics and clinical text were rarely primary DL inputs. DL models demonstrate promising accuracy for pCR prediction, especially when integrating multiple modalities and longitudinal imaging. However, significant methodological heterogeneity, reliance on retrospective data, and limited external validation hinder clinical translation. Future research should prioritize prospective validation, integration underutilized data (multi-omics, clinical), and explainable AI to advance DL predictors to the clinical setting.

BrainSymphony: A Transformer-Driven Fusion of fMRI Time Series and Structural Connectivity

Moein Khajehnejad, Forough Habibollahi, Adeel Razi

arxiv logopreprintJun 23 2025
Existing foundation models for neuroimaging are often prohibitively large and data-intensive. We introduce BrainSymphony, a lightweight, parameter-efficient foundation model that achieves state-of-the-art performance while being pre-trained on significantly smaller public datasets. BrainSymphony's strong multimodal architecture processes functional MRI data through parallel spatial and temporal transformer streams, which are then efficiently distilled into a unified representation by a Perceiver module. Concurrently, it models structural connectivity from diffusion MRI using a novel signed graph transformer to encode the brain's anatomical structure. These powerful, modality-specific representations are then integrated via an adaptive fusion gate. Despite its compact design, our model consistently outperforms larger models on a diverse range of downstream benchmarks, including classification, prediction, and unsupervised network identification tasks. Furthermore, our model revealed novel insights into brain dynamics using attention maps on a unique external psilocybin neuroimaging dataset (pre- and post-administration). BrainSymphony establishes that architecturally-aware, multimodal models can surpass their larger counterparts, paving the way for more accessible and powerful research in computational neuroscience.

[Incidental pulmonary nodules on CT imaging: what to do?].

van der Heijden EHFM, Snoeren M, Jacobs C

pubmed logopapersJun 23 2025
Incidental pulmonary nodules are very frequently found on CT imaging and may represent (early stage) lung cancers without any signs or symptoms. These incidental findings can be solid lesions or ground glass lesions that may be solitary or multiple. Careful, and systematic evaluation of these findings in imaging is needed to determine the risk of malignancy, based on imaging characteristics, patient factors like smoking habits, prior cancers or family history, and growth rate preferably determined by volume measurements. Once the risk of malignancy is increased, minimal invasive image guided biopsy is warranted, preferably by navigation bronchoscopy. We present two cases to illustrate this clinical workup: one case with a benign solitary pulmonary nodule, and a second case with multiple ground glass opacities, diagnosed as synchronous primary adenocarcinomas of the lung. This is followed by a review of the current status of computer and artificial intelligence aided diagnostic support and clinical workflow optimization.

From BERT to generative AI - Comparing encoder-only vs. large language models in a cohort of lung cancer patients for named entity recognition in unstructured medical reports.

Arzideh K, Schäfer H, Allende-Cid H, Baldini G, Hilser T, Idrissi-Yaghir A, Laue K, Chakraborty N, Doll N, Antweiler D, Klug K, Beck N, Giesselbach S, Friedrich CM, Nensa F, Schuler M, Hosch R

pubmed logopapersJun 23 2025
Extracting clinical entities from unstructured medical documents is critical for improving clinical decision support and documentation workflows. This study examines the performance of various encoder and decoder models trained for Named Entity Recognition (NER) of clinical parameters in pathology and radiology reports, highlighting the applicability of Large Language Models (LLMs) for this task. Three NER methods were evaluated: (1) flat NER using transformer-based models, (2) nested NER with a multi-task learning setup, and (3) instruction-based NER utilizing LLMs. A dataset of 2013 pathology reports and 413 radiology reports, annotated by medical students, was used for training and testing. The performance of encoder-based NER models (flat and nested) was superior to that of LLM-based approaches. The best-performing flat NER models achieved F1-scores of 0.87-0.88 on pathology reports and up to 0.78 on radiology reports, while nested NER models performed slightly lower. In contrast, multiple LLMs, despite achieving high precision, yielded significantly lower F1-scores (ranging from 0.18 to 0.30) due to poor recall. A contributing factor appears to be that these LLMs produce fewer but more accurate entities, suggesting they become overly conservative when generating outputs. LLMs in their current form are unsuitable for comprehensive entity extraction tasks in clinical domains, particularly when faced with a high number of entity types per document, though instructing them to return more entities in subsequent refinements may improve recall. Additionally, their computational overhead does not provide proportional performance gains. Encoder-based NER models, particularly those pre-trained on biomedical data, remain the preferred choice for extracting information from unstructured medical documents.

MRI Radiomics and Automated Habitat Analysis Enhance Machine Learning Prediction of Bone Metastasis and High-Grade Gleason Scores in Prostate Cancer.

Yang Y, Zheng B, Zou B, Liu R, Yang R, Chen Q, Guo Y, Yu S, Chen B

pubmed logopapersJun 23 2025
To explore the value of machine learning models based on MRI radiomics and automated habitat analysis in predicting bone metastasis and high-grade pathological Gleason scores in prostate cancer. This retrospective study enrolled 214 patients with pathologically diagnosed prostate cancer from May 2013 to January 2025, including 93 cases with bone metastasis and 159 cases with high-grade Gleason scores. Clinical, pathological and MRI data were collected. An nnUNet model automatically segmented the prostate in MRI scans. K-means clustering identified subregions within the entire prostate in T2-FS images. Senior radiologists manually segmented regions of interest (ROIs) in prostate lesions. Radiomics features were extracted from these habitat subregions and lesion ROIs. These features combined with clinical features were utilized to build multiple machine learning classifiers to predict bone metastasis and high-grade Gleason scores while a K-means clustering method was applied to obtain habitat subregions within the whole prostate. Finally, the models underwent interpretable analysis based on feature importance. The nnUNet model achieved a mean Dice coefficient of 0.970 for segmentation. Habitat analysis using 2 clusters yielded the highest average silhouette coefficient (0.57). Machine learning models based on a combination of lesion radiomics, habitat radiomics, and clinical features achieved the best performance in both prediction tasks. The Extra Trees Classifier achieved the highest AUC (0.900) for predicting bone metastasis, while the CatBoost Classifier performed best (AUC 0.895) for predicting high-grade Gleason scores. The interpretability analysis of the optimal models showed that the PSA clinical feature was crucial for predictions, while both habitat radiomics and lesion radiomics also played important roles. The study proposed an automated prostate habitat analysis for prostate cancer, enabling a comprehensive analysis of tumor heterogeneity. The machine learning models developed achieved excellent performance in predicting the risk of bone metastasis and high-grade Gleason scores in prostate cancer. This approach overcomes the limitations of manual feature extraction, and the inadequate analysis of heterogeneity often encountered in traditional radiomics, thereby improving model performance.

Ensemble-based Convolutional Neural Networks for brain tumor classification in MRI: Enhancing accuracy and interpretability using explainable AI.

Sánchez-Moreno L, Perez-Peña A, Duran-Lopez L, Dominguez-Morales JP

pubmed logopapersJun 23 2025
Accurate and efficient classification of brain tumors, including gliomas, meningiomas, and pituitary adenomas, is critical for early diagnosis and treatment planning. Magnetic resonance imaging (MRI) is a key diagnostic tool, and deep learning models have shown promise in automating tumor classification. However, challenges remain in achieving high accuracy while maintaining interpretability for clinical use. This study explores the use of transfer learning with pre-trained architectures, including VGG16, DenseNet121, and Inception-ResNet-v2, to classify brain tumors from MRI images. An ensemble-based classifier was developed using a majority voting strategy to improve robustness. To enhance clinical applicability, explainability techniques such as Grad-CAM++ and Integrated Gradients were employed, allowing visualization of model decision-making. The ensemble model outperformed individual Convolutional Neural Network (CNN) architectures, achieving an accuracy of 86.17% in distinguishing gliomas, meningiomas, pituitary adenomas, and benign cases. Interpretability techniques provided heatmaps that identified key regions influencing model predictions, aligning with radiological features and enhancing trust in the results. The proposed ensemble-based deep learning framework improves the accuracy and interpretability of brain tumor classification from MRI images. By combining multiple CNN architectures and integrating explainability methods, this approach offers a more reliable and transparent diagnostic tool to support medical professionals in clinical decision-making.

Machine Learning Models Based on CT Enterography for Differentiating Between Ulcerative Colitis and Colonic Crohn's Disease Using Intestinal Wall, Mesenteric Fat, and Visceral Fat Features.

Wang X, Wang X, Lei J, Rong C, Zheng X, Li S, Gao Y, Wu X

pubmed logopapersJun 23 2025
This study aimed to develop radiomic-based machine learning models using computed tomography enterography (CTE) features derived from the intestinal wall, mesenteric fat, and visceral fat to differentiate between ulcerative colitis (UC) and colonic Crohn's disease (CD). Clinical and imaging data from 116 patients with inflammatory bowel disease (IBD) (68 with UC and 48 with colonic CD) were retrospectively collected. Radiomic features were extracted from venous-phase CTE images. Feature selection was performed via the intraclass correlation coefficient (ICC), correlation analysis, SelectKBest, and least absolute shrinkage and selection operator (LASSO) regression. Support vector machine models were constructed using features from individual and combined regions, with model performance evaluated using the area under the ROC curve (AUC). The combined radiomic model, integrating features from all three regions, exhibited superior classification performance (AUC= 0.857, 95% CI, 0.732-0.982), with a sensitivity of 0.762 (95% CI, 0.547-0.903) and specificity of 0.857 (95% CI, 0.601-0.960) in the testing cohort. The models based on features from the intestinal wall, mesenteric fat, and visceral fat achieved AUCs of 0.847 (95% CI, 0.710-0.984), 0.707 (95% CI, 0.526-0.889), and 0.731 (95% CI, 0.553-0.910), respectively, in the testing cohort. The intestinal wall model demonstrated the best calibration. This study demonstrated the feasibility of constructing machine learning models based on radiomic features of the intestinal wall, mesenteric fat, and visceral fat to distinguish between UC and colonic CD.

Benchmarking Foundation Models and Parameter-Efficient Fine-Tuning for Prognosis Prediction in Medical Imaging

Filippo Ruffini, Elena Mulero Ayllon, Linlin Shen, Paolo Soda, Valerio Guarrasi

arxiv logopreprintJun 23 2025
Artificial Intelligence (AI) holds significant promise for improving prognosis prediction in medical imaging, yet its effective application remains challenging. In this work, we introduce a structured benchmark explicitly designed to evaluate and compare the transferability of Convolutional Neural Networks and Foundation Models in predicting clinical outcomes in COVID-19 patients, leveraging diverse publicly available Chest X-ray datasets. Our experimental methodology extensively explores a wide set of fine-tuning strategies, encompassing traditional approaches such as Full Fine-Tuning and Linear Probing, as well as advanced Parameter-Efficient Fine-Tuning methods including Low-Rank Adaptation, BitFit, VeRA, and IA3. The evaluations were conducted across multiple learning paradigms, including both extensive full-data scenarios and more clinically realistic Few-Shot Learning settings, which are critical for modeling rare disease outcomes and rapidly emerging health threats. By implementing a large-scale comparative analysis involving a diverse selection of pretrained models, including general-purpose architectures pretrained on large-scale datasets such as CLIP and DINOv2, to biomedical-specific models like MedCLIP, BioMedCLIP, and PubMedCLIP, we rigorously assess each model's capacity to effectively adapt and generalize to prognosis tasks, particularly under conditions of severe data scarcity and pronounced class imbalance. The benchmark was designed to capture critical conditions common in prognosis tasks, including variations in dataset size and class distribution, providing detailed insights into the strengths and limitations of each fine-tuning strategy. This extensive and structured evaluation aims to inform the practical deployment and adoption of robust, efficient, and generalizable AI-driven solutions in real-world clinical prognosis prediction workflows.
Page 163 of 2442432 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.