Sort by:
Page 16 of 59587 results

Task-Generalized Adaptive Cross-Domain Learning for Multimodal Image Fusion

Mengyu Wang, Zhenyu Liu, Kun Li, Yu Wang, Yuwei Wang, Yanyan Wei, Fei Wang

arxiv logopreprintAug 21 2025
Multimodal Image Fusion (MMIF) aims to integrate complementary information from different imaging modalities to overcome the limitations of individual sensors. It enhances image quality and facilitates downstream applications such as remote sensing, medical diagnostics, and robotics. Despite significant advancements, current MMIF methods still face challenges such as modality misalignment, high-frequency detail destruction, and task-specific limitations. To address these challenges, we propose AdaSFFuse, a novel framework for task-generalized MMIF through adaptive cross-domain co-fusion learning. AdaSFFuse introduces two key innovations: the Adaptive Approximate Wavelet Transform (AdaWAT) for frequency decoupling, and the Spatial-Frequency Mamba Blocks for efficient multimodal fusion. AdaWAT adaptively separates the high- and low-frequency components of multimodal images from different scenes, enabling fine-grained extraction and alignment of distinct frequency characteristics for each modality. The Spatial-Frequency Mamba Blocks facilitate cross-domain fusion in both spatial and frequency domains, enhancing this process. These blocks dynamically adjust through learnable mappings to ensure robust fusion across diverse modalities. By combining these components, AdaSFFuse improves the alignment and integration of multimodal features, reduces frequency loss, and preserves critical details. Extensive experiments on four MMIF tasks -- Infrared-Visible Image Fusion (IVF), Multi-Focus Image Fusion (MFF), Multi-Exposure Image Fusion (MEF), and Medical Image Fusion (MIF) -- demonstrate AdaSFFuse's superior fusion performance, ensuring both low computational cost and a compact network, offering a strong balance between performance and efficiency. The code will be publicly available at https://github.com/Zhen-yu-Liu/AdaSFFuse.

LGMSNet: Thinning a medical image segmentation model via dual-level multiscale fusion

Chengqi Dong, Fenghe Tang, Rongge Mao, Xinpei Gao, S. Kevin Zhou

arxiv logopreprintAug 21 2025
Medical image segmentation plays a pivotal role in disease diagnosis and treatment planning, particularly in resource-constrained clinical settings where lightweight and generalizable models are urgently needed. However, existing lightweight models often compromise performance for efficiency and rarely adopt computationally expensive attention mechanisms, severely restricting their global contextual perception capabilities. Additionally, current architectures neglect the channel redundancy issue under the same convolutional kernels in medical imaging, which hinders effective feature extraction. To address these challenges, we propose LGMSNet, a novel lightweight framework based on local and global dual multiscale that achieves state-of-the-art performance with minimal computational overhead. LGMSNet employs heterogeneous intra-layer kernels to extract local high-frequency information while mitigating channel redundancy. In addition, the model integrates sparse transformer-convolutional hybrid branches to capture low-frequency global information. Extensive experiments across six public datasets demonstrate LGMSNet's superiority over existing state-of-the-art methods. In particular, LGMSNet maintains exceptional performance in zero-shot generalization tests on four unseen datasets, underscoring its potential for real-world deployment in resource-limited medical scenarios. The whole project code is in https://github.com/cq-dong/LGMSNet.

Detection of neonatal pneumoperitoneum on radiographs using deep multi-task learning.

Park C, Choi J, Hwang J, Jeong H, Kim PH, Cho YA, Lee BS, Jung E, Kwon SH, Kim M, Jun H, Nam Y, Kim N, Yoon HM

pubmed logopapersAug 20 2025
Neonatal pneumoperitoneum is a life-threatening condition requiring prompt diagnosis, yet its subtle radiographic signs pose diagnostic challenges, especially in emergency settings. To develop and validate a deep multi-task learning model for diagnosing neonatal pneumoperitoneum on radiographs and to assess its clinical utility across clinicians of varying experience levels. Retrospective diagnostic study using internal and external datasets. Internal data were collected between January 1995 and August 2018, while external data were sourced from 11 neonatal intensive care units. Tertiary hospital and multicenter validation settings. Internal dataset: 204 neonates (546 radiographs), external dataset: 378 radiographs (125 pneumoperitoneum cases, 214 non-pneumoperitoneum cases). Radiographs were reviewed by two pediatric radiologists. A reader study involved 4 physicians with varying experience levels. A deep multi-task learning model combining classification and segmentation tasks for pneumoperitoneum detection. The primary outcomes included diagnostic accuracy, area under the receiver operating characteristic curve (AUC), and inter-reader agreement. AI-assisted and unassisted reader performance metrics were compared. The AI model achieved an AUC of 0.98 (95 % CI, 0.94-1.00) and accuracy of 94 % (95 % CI, 85.1-99.6) in internal validation, and AUC of 0.89 (95 % CI, 0.85-0.92) with accuracy of 84.1 % (95 % CI, 80.4-87.8) in external validation. AI assistance improved reader accuracy from 82.5 % to 86.6 % (p < .001) and inter-reader agreement (kappa increased from 0.33 to 0.71 to 0.54-0.86). The multi-task learning model demonstrated excellent diagnostic performance and improved clinicians' diagnostic accuracy and agreement, suggesting its potential to enhance care in neonatal intensive care settings. All code is available at https://github.com/brody9512/NEC_MTL.

An MRI Atlas of the Human Fetal Brain: Reference and Segmentation Tools for Fetal Brain MRI Analysis

Mahdi Bagheri, Clemente Velasco-Annis, Jian Wang, Razieh Faghihpirayesh, Shadab Khan, Camilo Calixto, Camilo Jaimes, Lana Vasung, Abdelhakim Ouaalam, Onur Afacan, Simon K. Warfield, Caitlin K. Rollins, Ali Gholipour

arxiv logopreprintAug 20 2025
Accurate characterization of in-utero brain development is essential for understanding typical and atypical neurodevelopment. Building upon previous efforts to construct spatiotemporal fetal brain MRI atlases, we present the CRL-2025 fetal brain atlas, which is a spatiotemporal (4D) atlas of the developing fetal brain between 21 and 37 gestational weeks. This atlas is constructed from carefully processed MRI scans of 160 fetuses with typically-developing brains using a diffeomorphic deformable registration framework integrated with kernel regression on age. CRL-2025 uniquely includes detailed tissue segmentations, transient white matter compartments, and parcellation into 126 anatomical regions. This atlas offers significantly enhanced anatomical details over the CRL-2017 atlas, and is released along with the CRL diffusion MRI atlas with its newly created tissue segmentation and labels as well as deep learning-based multiclass segmentation models for fine-grained fetal brain MRI segmentation. The CRL-2025 atlas and its associated tools provide a robust and scalable platform for fetal brain MRI segmentation, groupwise analysis, and early neurodevelopmental research, and these materials are publicly released to support the broader research community.

TCFNet: Bidirectional face-bone transformation via a Transformer-based coarse-to-fine point movement network

Runshi Zhang, Bimeng Jie, Yang He, Junchen Wang

arxiv logopreprintAug 20 2025
Computer-aided surgical simulation is a critical component of orthognathic surgical planning, where accurately simulating face-bone shape transformations is significant. The traditional biomechanical simulation methods are limited by their computational time consumption levels, labor-intensive data processing strategies and low accuracy. Recently, deep learning-based simulation methods have been proposed to view this problem as a point-to-point transformation between skeletal and facial point clouds. However, these approaches cannot process large-scale points, have limited receptive fields that lead to noisy points, and employ complex preprocessing and postprocessing operations based on registration. These shortcomings limit the performance and widespread applicability of such methods. Therefore, we propose a Transformer-based coarse-to-fine point movement network (TCFNet) to learn unique, complicated correspondences at the patch and point levels for dense face-bone point cloud transformations. This end-to-end framework adopts a Transformer-based network and a local information aggregation network (LIA-Net) in the first and second stages, respectively, which reinforce each other to generate precise point movement paths. LIA-Net can effectively compensate for the neighborhood precision loss of the Transformer-based network by modeling local geometric structures (edges, orientations and relative position features). The previous global features are employed to guide the local displacement using a gated recurrent unit. Inspired by deformable medical image registration, we propose an auxiliary loss that can utilize expert knowledge for reconstructing critical organs.Compared with the existing state-of-the-art (SOTA) methods on gathered datasets, TCFNet achieves outstanding evaluation metrics and visualization results. The code is available at https://github.com/Runshi-Zhang/TCFNet.

Review of GPU-based Monte Carlo simulation platforms for transmission and emission tomography in medicine.

Chi Y, Schubert KE, Badal A, Roncali E

pubmed logopapersAug 20 2025
Monte Carlo (MC) simulation remains the gold standard for modeling complex physical interactions in transmission and emission tomography, with GPU parallel computing offering unmatched computational performance and enabling practical, large-scale MC applications. In recent years, rapid advancements in both GPU technologies and tomography techniques have been observed. Harnessing emerging GPU capabilities to accelerate MC simulation and strengthen its role in supporting the rapid growth of medical tomography has become an important topic. To provide useful insights, we conducted a comprehensive review of state-of-the-art GPU-accelerated MC simulations in tomography, highlighting current achievements and underdeveloped areas.&#xD;&#xD;Approach: We reviewed key technical developments across major tomography modalities, including computed tomography (CT), cone-beam CT (CBCT), positron emission tomography, single-photon emission computed tomography, proton CT, emerging techniques, and hybrid modalities. We examined MC simulation methods and major CPU-based MC platforms that have historically supported medical imaging development, followed by a review of GPU acceleration strategies, hardware evolutions, and leading GPU-based MC simulation packages. Future development directions were also discussed.&#xD;&#xD;Main Results: Significant advancements have been achieved in both tomography and MC simulation technologies over the past half-century. The introduction of GPUs has enabled speedups often exceeding 100-1000 times over CPU implementations, providing essential support to the development of new imaging systems. Emerging GPU features like ray-tracing cores, tensor cores, and GPU-execution-friendly transport methods offer further opportunities for performance enhancement. &#xD;&#xD;Significance: GPU-based MC simulation is expected to remain essential in advancing medical emission and transmission tomography. With the emergence of new concepts such as training Machine Learning with synthetic data, Digital Twins for Healthcare, and Virtual Clinical Trials, improving hardware portability and modularizing GPU-based MC codes to adapt to these evolving simulation needs represent important future research directions. This review aims to provide useful insights for researchers, developers, and practitioners in relevant fields.

A fully automated AI-based method for tumour detection and quantification on [<sup>18</sup>F]PSMA-1007 PET-CT images in prostate cancer.

Trägårdh E, Ulén J, Enqvist O, Larsson M, Valind K, Minarik D, Edenbrandt L

pubmed logopapersAug 20 2025
In this study, we further developed an artificial intelligence (AI)-based method for the detection and quantification of tumours in the prostate, lymph nodes and bone in prostate-specific membrane antigen (PSMA)-targeting positron emission tomography with computed tomography (PET-CT) images. A total of 1064 [<sup>18</sup>F]PSMA-1007 PET-CT scans were used (approximately twice as many compared to our previous AI model), of which 120 were used as test set. Suspected lesions were manually annotated and used as ground truth. A convolutional neural network was developed and trained. The sensitivity and positive predictive value (PPV) were calculated using two sets of manual segmentations as reference. Results were also compared to our previously developed AI method. The correlation between manually and AI-based calculations of total lesion volume (TLV) and total lesion uptake (TLU) were calculated. The sensitivities of the AI method were 85% for prostate tumour/recurrence, 91% for lymph node metastases and 61% for bone metastases (82%, 86% and 70% for manual readings and 66%, 88% and 71% for the old AI method). The PPVs of the AI method were 85%, 83% and 58%, respectively (63%, 86% and 39% for manual readings, and 69%, 70% and 39% for the old AI method). The correlations between manual and AI-based calculations of TLV and TLU ranged from r = 0.62 to r = 0.96. The performance of the newly developed and fully automated AI-based method for detecting and quantifying prostate tumour and suspected lymph node and bone metastases increased significantly, especially the PPV. The AI method is freely available to other researchers ( www.recomia.org ).

Comparing Conditional Diffusion Models for Synthesizing Contrast-Enhanced Breast MRI from Pre-Contrast Images

Sebastian Ibarra, Javier del Riego, Alessandro Catanese, Julian Cuba, Julian Cardona, Nataly Leon, Jonathan Infante, Karim Lekadir, Oliver Diaz, Richard Osuala

arxiv logopreprintAug 19 2025
Dynamic contrast-enhanced (DCE) MRI is essential for breast cancer diagnosis and treatment. However, its reliance on contrast agents introduces safety concerns, contraindications, increased cost, and workflow complexity. To this end, we present pre-contrast conditioned denoising diffusion probabilistic models to synthesize DCE-MRI, introducing, evaluating, and comparing a total of 22 generative model variants in both single-breast and full breast settings. Towards enhancing lesion fidelity, we introduce both tumor-aware loss functions and explicit tumor segmentation mask conditioning. Using a public multicenter dataset and comparing to respective pre-contrast baselines, we observe that subtraction image-based models consistently outperform post-contrast-based models across five complementary evaluation metrics. Apart from assessing the entire image, we also separately evaluate the region of interest, where both tumor-aware losses and segmentation mask inputs improve evaluation metrics. The latter notably enhance qualitative results capturing contrast uptake, albeit assuming access to tumor localization inputs that are not guaranteed to be available in screening settings. A reader study involving 2 radiologists and 4 MRI technologists confirms the high realism of the synthetic images, indicating an emerging clinical potential of generative contrast-enhancement. We share our codebase at https://github.com/sebastibar/conditional-diffusion-breast-MRI.

Lung adenocarcinoma subtype classification based on contrastive learning model with multimodal integration.

Wang C, Liu L, Fan C, Zhang Y, Mai Z, Li L, Liu Z, Tian Y, Hu J, Elazab A

pubmed logopapersAug 19 2025
Accurately identifying the stages of lung adenocarcinoma is essential for selecting the most appropriate treatment plans. Nonetheless, this task is complicated due to challenges such as integrating diverse data, similarities among subtypes, and the need to capture contextual features, making precise differentiation difficult. We address these challenges and propose a multimodal deep neural network that integrates computed tomography (CT) images, annotated lesion bounding boxes, and electronic health records. Our model first combines bounding boxes with precise lesion location data and CT scans, generating a richer semantic representation through feature extraction from regions of interest to enhance localization accuracy using a vision transformer module. Beyond imaging data, the model also incorporates clinical information encoded using a fully connected encoder. Features extracted from both CT and clinical data are optimized for cosine similarity using a contrastive language-image pre-training module, ensuring they are cohesively integrated. In addition, we introduce an attention-based feature fusion module that harmonizes these features into a unified representation to fuse features from different modalities further. This integrated feature set is then fed into a classifier that effectively distinguishes among the three types of adenocarcinomas. Finally, we employ focal loss to mitigate the effects of unbalanced classes and contrastive learning loss to enhance feature representation and improve the model's performance. Our experiments on public and proprietary datasets demonstrate the efficiency of our model, achieving a superior validation accuracy of 81.42% and an area under the curve of 0.9120. These results significantly outperform recent multimodal classification approaches. The code is available at https://github.com/fancccc/LungCancerDC .

Direct vascular territory segmentation on cerebral digital subtraction angiography

P. Matthijs van der Sluijs, Lotte Strong, Frank G. te Nijenhuis, Sandra Cornelissen, Pieter Jan van Doormaal, Geert Lycklama a Nijeholt, Wim van Zwam, Ad van Es, Diederik Dippel, Aad van der Lugt, Danny Ruijters, Ruisheng Su, Theo van Walsum

arxiv logopreprintAug 19 2025
X-ray digital subtraction angiography (DSA) is frequently used when evaluating minimally invasive medical interventions. DSA predominantly visualizes vessels, and soft tissue anatomy is less visible or invisible in DSA. Visualization of cerebral anatomy could aid physicians during treatment. This study aimed to develop and evaluate a deep learning model to predict vascular territories that are not explicitly visible in DSA imaging acquired during ischemic stroke treatment. We trained an nnUNet model with manually segmented intracranial carotid artery and middle cerebral artery vessel territories on minimal intensity projection DSA acquired during ischemic stroke treatment. We compared the model to a traditional atlas registration model using the Dice similarity coefficient (DSC) and average surface distance (ASD). Additionally, we qualitatively assessed the success rate in both models using an external test. The segmentation model was trained on 1224 acquisitions from 361 patients with ischemic stroke. The segmentation model had a significantly higher DSC (0.96 vs 0.82, p<0.001) and lower ASD compared to the atlas model (13.8 vs 47.3, p<0.001). The success rate of the segmentation model (85%) was higher compared to the atlas registration model (66%) in the external test set. A deep learning method for the segmentation of vascular territories without explicit borders on cerebral DSA demonstrated superior accuracy and quality compared to the traditional atlas-based method. This approach has the potential to be applied to other anatomical structures for enhanced visualization during X-ray guided medical procedures. The code is publicly available at https://github.com/RuishengSu/autoTICI.
Page 16 of 59587 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.