Sort by:
Page 16 of 42417 results

Understanding Dataset Bias in Medical Imaging: A Case Study on Chest X-rays

Ethan Dack, Chengliang Dai

arxiv logopreprintJul 10 2025
Recent work has revisited the infamous task Name that dataset and established that in non-medical datasets, there is an underlying bias and achieved high Accuracies on the dataset origin task. In this work, we revisit the same task applied to popular open-source chest X-ray datasets. Medical images are naturally more difficult to release for open-source due to their sensitive nature, which has led to certain open-source datasets being extremely popular for research purposes. By performing the same task, we wish to explore whether dataset bias also exists in these datasets. % We deliberately try to increase the difficulty of the task by dataset transformations. We apply simple transformations of the datasets to try to identify bias. Given the importance of AI applications in medical imaging, it's vital to establish whether modern methods are taking shortcuts or are focused on the relevant pathology. We implement a range of different network architectures on the datasets: NIH, CheXpert, MIMIC-CXR and PadChest. We hope this work will encourage more explainable research being performed in medical imaging and the creation of more open-source datasets in the medical domain. The corresponding code will be released upon acceptance.

Understanding Dataset Bias in Medical Imaging: A Case Study on Chest X-rays

Ethan Dack, Chengliang Dai

arxiv logopreprintJul 10 2025
Recent works have revisited the infamous task ``Name That Dataset'', demonstrating that non-medical datasets contain underlying biases and that the dataset origin task can be solved with high accuracy. In this work, we revisit the same task applied to popular open-source chest X-ray datasets. Medical images are naturally more difficult to release for open-source due to their sensitive nature, which has led to certain open-source datasets being extremely popular for research purposes. By performing the same task, we wish to explore whether dataset bias also exists in these datasets. To extend our work, we apply simple transformations to the datasets, repeat the same task, and perform an analysis to identify and explain any detected biases. Given the importance of AI applications in medical imaging, it's vital to establish whether modern methods are taking shortcuts or are focused on the relevant pathology. We implement a range of different network architectures on the datasets: NIH, CheXpert, MIMIC-CXR and PadChest. We hope this work will encourage more explainable research being performed in medical imaging and the creation of more open-source datasets in the medical domain. Our code can be found here: https://github.com/eedack01/x_ray_ds_bias.

4KAgent: Agentic Any Image to 4K Super-Resolution

Yushen Zuo, Qi Zheng, Mingyang Wu, Xinrui Jiang, Renjie Li, Jian Wang, Yide Zhang, Gengchen Mai, Lihong V. Wang, James Zou, Xiaoyu Wang, Ming-Hsuan Yang, Zhengzhong Tu

arxiv logopreprintJul 9 2025
We present 4KAgent, a unified agentic super-resolution generalist system designed to universally upscale any image to 4K resolution (and even higher, if applied iteratively). Our system can transform images from extremely low resolutions with severe degradations, for example, highly distorted inputs at 256x256, into crystal-clear, photorealistic 4K outputs. 4KAgent comprises three core components: (1) Profiling, a module that customizes the 4KAgent pipeline based on bespoke use cases; (2) A Perception Agent, which leverages vision-language models alongside image quality assessment experts to analyze the input image and make a tailored restoration plan; and (3) A Restoration Agent, which executes the plan, following a recursive execution-reflection paradigm, guided by a quality-driven mixture-of-expert policy to select the optimal output for each step. Additionally, 4KAgent embeds a specialized face restoration pipeline, significantly enhancing facial details in portrait and selfie photos. We rigorously evaluate our 4KAgent across 11 distinct task categories encompassing a total of 26 diverse benchmarks, setting new state-of-the-art on a broad spectrum of imaging domains. Our evaluations cover natural images, portrait photos, AI-generated content, satellite imagery, fluorescence microscopy, and medical imaging like fundoscopy, ultrasound, and X-ray, demonstrating superior performance in terms of both perceptual (e.g., NIQE, MUSIQ) and fidelity (e.g., PSNR) metrics. By establishing a novel agentic paradigm for low-level vision tasks, we aim to catalyze broader interest and innovation within vision-centric autonomous agents across diverse research communities. We will release all the code, models, and results at: https://4kagent.github.io.

Speckle2Self: Self-Supervised Ultrasound Speckle Reduction Without Clean Data

Xuesong Li, Nassir Navab, Zhongliang Jiang

arxiv logopreprintJul 9 2025
Image denoising is a fundamental task in computer vision, particularly in medical ultrasound (US) imaging, where speckle noise significantly degrades image quality. Although recent advancements in deep neural networks have led to substantial improvements in denoising for natural images, these methods cannot be directly applied to US speckle noise, as it is not purely random. Instead, US speckle arises from complex wave interference within the body microstructure, making it tissue-dependent. This dependency means that obtaining two independent noisy observations of the same scene, as required by pioneering Noise2Noise, is not feasible. Additionally, blind-spot networks also cannot handle US speckle noise due to its high spatial dependency. To address this challenge, we introduce Speckle2Self, a novel self-supervised algorithm for speckle reduction using only single noisy observations. The key insight is that applying a multi-scale perturbation (MSP) operation introduces tissue-dependent variations in the speckle pattern across different scales, while preserving the shared anatomical structure. This enables effective speckle suppression by modeling the clean image as a low-rank signal and isolating the sparse noise component. To demonstrate its effectiveness, Speckle2Self is comprehensively compared with conventional filter-based denoising algorithms and SOTA learning-based methods, using both realistic simulated US images and human carotid US images. Additionally, data from multiple US machines are employed to evaluate model generalization and adaptability to images from unseen domains. \textit{Code and datasets will be released upon acceptance.

Label-Efficient Chest X-ray Diagnosis via Partial CLIP Adaptation

Heet Nitinkumar Dalsania

arxiv logopreprintJul 9 2025
Modern deep learning implementations for medical imaging usually rely on large labeled datasets. These datasets are often difficult to obtain due to privacy concerns, high costs, and even scarcity of cases. In this paper, a label-efficient strategy is proposed for chest X-ray diagnosis that seeks to reflect real-world hospital scenarios. The experiments use the NIH Chest X-ray14 dataset and a pre-trained CLIP ViT-B/32 model. The model is adapted via partial fine-tuning of its visual encoder and then evaluated using zero-shot and few-shot learning with 1-16 labeled examples per disease class. The tests demonstrate that CLIP's pre-trained vision-language features can be effectively adapted to few-shot medical imaging tasks, achieving over 20\% improvement in mean AUC score as compared to the zero-shot baseline. The key aspect of this work is to attempt to simulate internal hospital workflows, where image archives exist but annotations are sparse. This work evaluates a practical and scalable solution for both common and rare disease diagnosis. Additionally this research is intended for academic and experimental purposes only and has not been peer reviewed yet. All code is found at https://github.com/heet007-code/CLIP-disease-xray.

Airway Segmentation Network for Enhanced Tubular Feature Extraction

Qibiao Wu, Yagang Wang, Qian Zhang

arxiv logopreprintJul 9 2025
Manual annotation of airway regions in computed tomography images is a time-consuming and expertise-dependent task. Automatic airway segmentation is therefore a prerequisite for enabling rapid bronchoscopic navigation and the clinical deployment of bronchoscopic robotic systems. Although convolutional neural network methods have gained considerable attention in airway segmentation, the unique tree-like structure of airways poses challenges for conventional and deformable convolutions, which often fail to focus on fine airway structures, leading to missed segments and discontinuities. To address this issue, this study proposes a novel tubular feature extraction network, named TfeNet. TfeNet introduces a novel direction-aware convolution operation that first applies spatial rotation transformations to adjust the sampling positions of linear convolution kernels. The deformed kernels are then represented as line segments or polylines in 3D space. Furthermore, a tubular feature fusion module (TFFM) is designed based on asymmetric convolution and residual connection strategies, enhancing the network's focus on subtle airway structures. Extensive experiments conducted on one public dataset and two datasets used in airway segmentation challenges demonstrate that the proposed TfeNet achieves more accuracy and continuous airway structure predictions compared with existing methods. In particular, TfeNet achieves the highest overall score of 94.95% on the current largest airway segmentation dataset, Airway Tree Modeling(ATM22), and demonstrates advanced performance on the lung fibrosis dataset(AIIB23). The code is available at https://github.com/QibiaoWu/TfeNet.

Noise-inspired diffusion model for generalizable low-dose CT reconstruction.

Gao Q, Chen Z, Zeng D, Zhang J, Ma J, Shan H

pubmed logopapersJul 8 2025
The generalization of deep learning-based low-dose computed tomography (CT) reconstruction models to doses unseen in the training data is important and remains challenging. Previous efforts heavily rely on paired data to improve the generalization performance and robustness through collecting either diverse CT data for re-training or a few test data for fine-tuning. Recently, diffusion models have shown promising and generalizable performance in low-dose CT (LDCT) reconstruction, however, they may produce unrealistic structures due to the CT image noise deviating from Gaussian distribution and imprecise prior information from the guidance of noisy LDCT images. In this paper, we propose a noise-inspired diffusion model for generalizable LDCT reconstruction, termed NEED, which tailors diffusion models for noise characteristics of each domain. First, we propose a novel shifted Poisson diffusion model to denoise projection data, which aligns the diffusion process with the noise model in pre-log LDCT projections. Second, we devise a doubly guided diffusion model to refine reconstructed images, which leverages LDCT images and initial reconstructions to more accurately locate prior information and enhance reconstruction fidelity. By cascading these two diffusion models for dual-domain reconstruction, our NEED requires only normal-dose data for training and can be effectively extended to various unseen dose levels during testing via a time step matching strategy. Extensive qualitative, quantitative, and segmentation-based evaluations on two datasets demonstrate that our NEED consistently outperforms state-of-the-art methods in reconstruction and generalization performance. Source code is made available at https://github.com/qgao21/NEED.

Adaptive batch-fusion self-supervised learning for ultrasound image pretraining.

Zhang J, Wu X, Liu S, Fan Y, Chen Y, Lyu G, Liu P, Liu Z, He S

pubmed logopapersJul 8 2025
Medical self-supervised learning eliminates the reliance on labels, making feature extraction simple and efficient. The intricate design of pretext tasks in single-modal self-supervised analysis presents challenges, however, compounded by an excessive dependency on data augmentation, leading to a bottleneck in medical self-supervised learning research. Consequently, this paper reanalyzes the feature learnability introduced by data augmentation strategies in medical image self-supervised learning. We introduce an adaptive self-supervised learning data augmentation method from the perspective of batch fusion. Moreover, we propose a conv embedding block for learning the incremental representation between these batches. We tested 5 fused data tasks proposed by previous researchers and it achieved a linear classification protocol accuracy of 94.25% with only 150 self-supervised feature training in Vision Transformer(ViT), which is the best among the same methods. With a detailed ablation study on previous augmentation strategies, the results indicate that the proposed medical data augmentation strategy in this paper effectively represents ultrasound data features in the self-supervised learning process. The code and weights could be found at here.

Wrist bone segmentation in X-ray images using CT-based simulations

Youssef ElTantawy, Alexia Karantana, Xin Chen

arxiv logopreprintJul 8 2025
Plain X-ray is one of the most common image modalities for clinical diagnosis (e.g. bone fracture, pneumonia, cancer screening, etc.). X-ray image segmentation is an essential step for many computer-aided diagnostic systems, yet it remains challenging. Deep-learning-based methods have achieved superior performance in medical image segmentation tasks but often require a large amount of high-quality annotated data for model training. Providing such an annotated dataset is not only time-consuming but also requires a high level of expertise. This is particularly challenging in wrist bone segmentation in X-rays, due to the interposition of multiple small carpal bones in the image. To overcome the data annotation issue, this work utilizes a large number of simulated X-ray images generated from Computed Tomography (CT) volumes with their corresponding 10 bone labels to train a deep learning-based model for wrist bone segmentation in real X-ray images. The proposed method was evaluated using both simulated images and real images. The method achieved Dice scores ranging from 0.80 to 0.92 for the simulated dataset generated from different view angles. Qualitative analysis of the segmentation results of the real X-ray images also demonstrated the superior performance of the trained model. The trained model and X-ray simulation code are freely available for research purposes: the link will be provided upon acceptance.

LangMamba: A Language-driven Mamba Framework for Low-dose CT Denoising with Vision-language Models

Zhihao Chen, Tao Chen, Chenhui Wang, Qi Gao, Huidong Xie, Chuang Niu, Ge Wang, Hongming Shan

arxiv logopreprintJul 8 2025
Low-dose computed tomography (LDCT) reduces radiation exposure but often degrades image quality, potentially compromising diagnostic accuracy. Existing deep learning-based denoising methods focus primarily on pixel-level mappings, overlooking the potential benefits of high-level semantic guidance. Recent advances in vision-language models (VLMs) suggest that language can serve as a powerful tool for capturing structured semantic information, offering new opportunities to improve LDCT reconstruction. In this paper, we introduce LangMamba, a Language-driven Mamba framework for LDCT denoising that leverages VLM-derived representations to enhance supervision from normal-dose CT (NDCT). LangMamba follows a two-stage learning strategy. First, we pre-train a Language-guided AutoEncoder (LangAE) that leverages frozen VLMs to map NDCT images into a semantic space enriched with anatomical information. Second, we synergize LangAE with two key components to guide LDCT denoising: Semantic-Enhanced Efficient Denoiser (SEED), which enhances NDCT-relevant local semantic while capturing global features with efficient Mamba mechanism, and Language-engaged Dual-space Alignment (LangDA) Loss, which ensures that denoised images align with NDCT in both perceptual and semantic spaces. Extensive experiments on two public datasets demonstrate that LangMamba outperforms conventional state-of-the-art methods, significantly improving detail preservation and visual fidelity. Remarkably, LangAE exhibits strong generalizability to unseen datasets, thereby reducing training costs. Furthermore, LangDA loss improves explainability by integrating language-guided insights into image reconstruction and offers a plug-and-play fashion. Our findings shed new light on the potential of language as a supervisory signal to advance LDCT denoising. The code is publicly available on https://github.com/hao1635/LangMamba.
Page 16 of 42417 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.