Sort by:
Page 16 of 38375 results

Latent Class Analysis Identifies Distinct Patient Phenotypes Associated With Mistaken Treatment Decisions and Adverse Outcomes in Coronary Artery Disease.

Qi J, Wang Z, Ma X, Wang Z, Li Y, Yang L, Shi D, Zhou Y

pubmed logopapersJul 19 2025
This study aimed to identify patient characteristics linked to mistaken treatments and major adverse cardiovascular events (MACE) in percutaneous coronary intervention (PCI) for coronary artery disease (CAD) using deep learning-based fractional flow reserve (DEEPVESSEL-FFR, DVFFR). A retrospective cohort of 3,840 PCI patients was analyzed using latent class analysis (LCA) based on eight factors. Mistaken treatment was defined as negative DVFFR patients undergoing revascularization or positive DVFFR patients not receiving it. MACE included all-cause mortality, rehospitalization for unstable angina, and non-fatal myocardial infarction. Patients were classified into comorbidities (Class 1), smoking-drinking (Class 2), and relatively healthy (Class 3) groups. Mistaken treatment was highest in Class 2 (15.4% vs. 6.7%, <i>P</i> < .001), while MACE was highest in Class 1 (7.0% vs. 4.8%, <i>P</i> < .001). Adjusted analyses showed increased mistaken treatment risk in Class 1 (OR 1.96; 95% CI 1.49-2.57) and Class 2 (OR 1.69; 95% CI 1.28-2.25) compared with Class 3. Class 1 also had higher MACE risk (HR 1.53; 95% CI 1.10-2.12). In conclusion, comorbidities and smoking-drinking classes had higher mistaken treatment and MACE risks compared with the relatively healthy class.

Enhancing cardiac disease detection via a fusion of machine learning and medical imaging.

Yu T, Chen K

pubmed logopapersJul 19 2025
Cardiovascular illnesses continue to be a predominant cause of mortality globally, underscoring the necessity for prompt and precise diagnosis to mitigate consequences and healthcare expenditures. This work presents a complete hybrid methodology that integrates machine learning techniques with medical image analysis to improve the identification of cardiovascular diseases. This research integrates many imaging modalities such as echocardiography, cardiac MRI, and chest radiographs with patient health records, enhancing diagnosis accuracy beyond standard techniques that depend exclusively on numerical clinical data. During the preprocessing phase, essential visual elements are collected from medical pictures utilizing image processing methods and convolutional neural networks (CNNs). These are subsequently integrated with clinical characteristics and input into various machine learning classifiers, including Support Vector Machines (SVM), Random Forest (RF), XGBoost, and Deep Neural Networks (DNNs), to differentiate between healthy persons and patients with cardiovascular illnesses. The proposed method attained a remarkable diagnostic accuracy of up to 96%, exceeding models reliant exclusively on clinical data. This study highlights the capability of integrating artificial intelligence with medical imaging to create a highly accurate and non-invasive diagnostic instrument for cardiovascular disease.

Feasibility and accuracy of the fully automated three-dimensional echocardiography right ventricular quantification software in children: validation against cardiac magnetic resonance.

Liu Q, Zheng Z, Zhang Y, Wu A, Lou J, Chen X, Yuan Y, Xie M, Zhang L, Sun P, Sun W, Lv Q

pubmed logopapersJul 18 2025
Previous studies have confirmed that fully automated three-dimensional echocardiography (3DE) right ventricular (RV) quantification software can accurately assess adult RV function. However, data on its accuracy in children are scarce. This study aimed to test the accuracy of the software in children using cardiac magnetic resonance (MR) as the gold standard. This study prospectively enrolled 82 children who underwent both echocardiography and cardiac MR within 24 h. The RV end-diastolic volume (EDV), end-systolic volume (ESV), and ejection fraction (EF) were obtained using the novel 3DE-RV quantification software and compared with cardiac MR values across different groups. The novel 3DE-RV quantification software was feasible in all 82 children (100%). Fully automated analysis was achieved in 35% patients with an analysis time of 8 ± 2 s and 100% reproducibility. Manual editing was necessary in the remaining 65% patients. The 3DE-derived RV volumes and EF correlated well with cardiac MR measurements (RVEDV, r=0.93; RVESV, r=0.90; RVEF, r=0.82; all P <0.001). Although the automated approach slightly underestimated RV volumes and overestimated RVEF compared with cardiac MR in the entire cohort, the bias was smaller in children with RVEF ≥ 45%, normal RV size, and good 3DE image quality. Fully automated 3DE-RV quantification software provided accurate and completely reproducible results in 35% children without any adjustment. The RV volumes and EF measured using the automated 3DE method correlated well with those from cardiac MR, especially in children with RVEF ≥ 45%, normal RV size, and good 3DE image quality. Therefore, the novel automated 3DE method may achieve rapid and accurate assessment of RV function in children with normal heart anatomy.

CT derived fractional flow reserve: Part 1 - Comprehensive review of methodologies.

Shaikh K, Lozano PR, Evangelou S, Wu EH, Nurmohamed NS, Madan N, Verghese D, Shekar C, Waheed A, Siddiqui S, Kolossváry M, Almeida S, Coombes T, Suchá D, Trivedi SJ, Ihdayhid AR

pubmed logopapersJul 18 2025
Advancements in cardiac computed tomography angiography (CCTA) have enabled the extraction of physiological data from an anatomy-based imaging modality. This review outlines the key methodologies for deriving fractional flow reserve (FFR) from CCTA, with a focus on two primary methods: 1) computational fluid dynamics-based FFR (CT-FFR) and 2) plaque-derived ischemia assessment using artificial intelligence and quantitative plaque metrics. These techniques have expanded the role of CCTA beyond anatomical assessment, allowing for concurrent evaluation of coronary physiology without the need for invasive testing. This review provides an overview of the principles, workflows, and limitations of each technique and aims to inform on the current state and future direction of non-invasive coronary physiology assessment.

AI-Driven segmentation and morphogeometric profiling of epicardial adipose tissue in type 2 diabetes.

Feng F, Hasaballa AI, Long T, Sun X, Fernandez J, Carlhäll CJ, Zhao J

pubmed logopapersJul 18 2025
Epicardial adipose tissue (EAT) is associated with cardiometabolic risk in type 2 diabetes (T2D), but its spatial distribution and structural alterations remain understudied. We aim to develop a shape-aware, AI-based method for automated segmentation and morphogeometric analysis of EAT in T2D. A total of 90 participants (45 with T2D and 45 age-, sex-matched controls) underwent cardiac 3D Dixon MRI, enrolled between 2014 and 2018 as part of the sub-study of the Swedish SCAPIS cohort. We developed EAT-Seg, a multi-modal deep learning model incorporating signed distance maps (SDMs) for shape-aware segmentation. Segmentation performance was evaluated using the Dice similarity coefficient (DSC), the 95% Hausdorff distance (HD95), and the average symmetric surface distance (ASSD). Statistical shape analysis combined with partial least squares discriminant analysis (PLS-DA) was applied to point cloud representations of EAT to capture latent spatial variations between groups. Morphogeometric features, including volume, 3D local thickness map, elongation and fragmentation index, were extracted and correlated with PLS-DA latent variables using Pearson correlation. Features with high-correlation were identified as key differentiators and evaluated using a Random Forest classifier. EAT-Seg achieved a DSC of 0.881, a HD95 of 3.213 mm, and an ASSD of 0.602 mm. Statistical shape analysis revealed spatial distribution differences in EAT between T2D and control groups. Morphogeometric feature analysis identified volume and thickness gradient-related features as key discriminators (r > 0.8, P < 0.05). Random Forest classification achieved an AUC of 0.703. This AI-based framework enables accurate segmentation for structurally complex EAT and reveals key morphogeometric differences associated with T2D, supporting its potential as a biomarker for cardiometabolic risk assessment.

Multi-modal Risk Stratification in Heart Failure with Preserved Ejection Fraction Using Clinical and CMR-derived Features: An Approach Incorporating Model Explainability.

Zhang S, Lin Y, Han D, Pan Y, Geng T, Ge H, Zhao J

pubmed logopapersJul 17 2025
Heart failure with preserved ejection fraction (HFpEF) poses significant diagnostic and prognostic challenges due to its clinical heterogeneity. This study proposes a multi-modal, explainable machine learning framework that integrates clinical variables and cardiac magnetic resonance (CMR)-derived features, particularly epicardial adipose tissue (EAT) volume, to improve risk stratification and outcome prediction in patients with HFpEF. A retrospective cohort of 301 participants (171 in the HFpEF group and 130 in the control group) was analyzed. Baseline characteristics, CMR-derived EAT volume, and laboratory biomarkers were integrated into machine learning models. Model performance was evaluated using accuracy, precision, recall, and F1-score. Additionally, receiver operating characteristic area under the curve (ROC-AUC) and precision-recall area under the curve (PR-AUC) were employed to assess discriminative power across varying decision thresholds. Hyperparameter optimization and ensemble techniques were applied to enhance predictive performance. HFpEF patients exhibited significantly higher EAT volume (70.9±27.3 vs. 41.9±18.3 mL, p<0.001) and NT-proBNP levels (1574 [963,2722] vs. 33 [10,100] pg/mL, p<0.001), along with a greater prevalence of comorbidities. The voting classifier demonstrated the highest accuracy for HFpEF diagnosis (0.94), with a precision of 0.96, recall of 0.94, and an F1-score of 0.95. For prognostic tasks, AdaBoost, XGBoost and Random Forest yielded superior performance in predicting adverse clinical outcomes, including rehospitalization and all-cause mortality (accuracy: 0.95). Key predictive features identified included EAT volume, right atrioventricular groove (Right AVG), tricuspid regurgitation velocity (TRV), and metabolic syndrome. Explainable models combining clinical and CMR-derived features, especially EAT volume, improve support for HFpEF diagnosis and outcome prediction. These findings highlight the value of a data-driven, interpretable approach to characterizing HFpEF phenotypes and may facilitate individualized risk assessment in selected populations.

Automatic selection of optimal TI for flow-independent dark-blood delayed-enhancement MRI.

Popescu AB, Rehwald W, Wendell D, Chevalier C, Itu LM, Suciu C, Chitiboi T

pubmed logopapersJul 17 2025
Propose and evaluate an automatic approach for predicting the optimal inversion time (TI) for dark and gray blood images for flow-independent dark-blood delayed-enhancement (FIDDLE) acquisition based on free-breathing FIDDLE TI-scout images. In 267 patients, the TI-scout sequence acquired single-shot magnetization-prepared and associated reference images (without preparation) on a 3 T Magnetom Vida and a 1.5 T Magnetom Sola scanner. Data were reconstructed into phase-corrected TI-scout images typically covering TIs from 140 to 440 ms (20 ms increment). A deep learning network was trained to segment the myocardium and blood pool in reference images. These segmentation masks were transferred to the TI-scout images to derive intensity features of myocardium and blood, with which T<sub>1</sub>-recovery curves were determined by logarithmic fitting. The optimal TI for dark and gray blood images were derived as linear functions of the TI in which both T<sub>1</sub>-curves cross. This TI-prediction pipeline was evaluated in 64 clinical subjects. The pipeline predicted optimal TIs with an average error less than 10 ms compared to manually annotated optimal TIs. The presented approach reliably and automatically predicted optimal TI for dark and gray blood FIDDLE acquisition, with an average error less than the TI increment of the FIDDLE TI-scout sequence.

Acoustic Index: A Novel AI-Driven Parameter for Cardiac Disease Risk Stratification Using Echocardiography

Beka Begiashvili, Carlos J. Fernandez-Candel, Matías Pérez Paredes

arxiv logopreprintJul 17 2025
Traditional echocardiographic parameters such as ejection fraction (EF) and global longitudinal strain (GLS) have limitations in the early detection of cardiac dysfunction. EF often remains normal despite underlying pathology, and GLS is influenced by load conditions and vendor variability. There is a growing need for reproducible, interpretable, and operator-independent parameters that capture subtle and global cardiac functional alterations. We introduce the Acoustic Index, a novel AI-derived echocardiographic parameter designed to quantify cardiac dysfunction from standard ultrasound views. The model combines Extended Dynamic Mode Decomposition (EDMD) based on Koopman operator theory with a hybrid neural network that incorporates clinical metadata. Spatiotemporal dynamics are extracted from echocardiographic sequences to identify coherent motion patterns. These are weighted via attention mechanisms and fused with clinical data using manifold learning, resulting in a continuous score from 0 (low risk) to 1 (high risk). In a prospective cohort of 736 patients, encompassing various cardiac pathologies and normal controls, the Acoustic Index achieved an area under the curve (AUC) of 0.89 in an independent test set. Cross-validation across five folds confirmed the robustness of the model, showing that both sensitivity and specificity exceeded 0.8 when evaluated on independent data. Threshold-based analysis demonstrated stable trade-offs between sensitivity and specificity, with optimal discrimination near this threshold. The Acoustic Index represents a physics-informed, interpretable AI biomarker for cardiac function. It shows promise as a scalable, vendor-independent tool for early detection, triage, and longitudinal monitoring. Future directions include external validation, longitudinal studies, and adaptation to disease-specific classifiers.

AortaDiff: Volume-Guided Conditional Diffusion Models for Multi-Branch Aortic Surface Generation

Delin An, Pan Du, Jian-Xun Wang, Chaoli Wang

arxiv logopreprintJul 17 2025
Accurate 3D aortic construction is crucial for clinical diagnosis, preoperative planning, and computational fluid dynamics (CFD) simulations, as it enables the estimation of critical hemodynamic parameters such as blood flow velocity, pressure distribution, and wall shear stress. Existing construction methods often rely on large annotated training datasets and extensive manual intervention. While the resulting meshes can serve for visualization purposes, they struggle to produce geometrically consistent, well-constructed surfaces suitable for downstream CFD analysis. To address these challenges, we introduce AortaDiff, a diffusion-based framework that generates smooth aortic surfaces directly from CT/MRI volumes. AortaDiff first employs a volume-guided conditional diffusion model (CDM) to iteratively generate aortic centerlines conditioned on volumetric medical images. Each centerline point is then automatically used as a prompt to extract the corresponding vessel contour, ensuring accurate boundary delineation. Finally, the extracted contours are fitted into a smooth 3D surface, yielding a continuous, CFD-compatible mesh representation. AortaDiff offers distinct advantages over existing methods, including an end-to-end workflow, minimal dependency on large labeled datasets, and the ability to generate CFD-compatible aorta meshes with high geometric fidelity. Experimental results demonstrate that AortaDiff performs effectively even with limited training data, successfully constructing both normal and pathologically altered aorta meshes, including cases with aneurysms or coarctation. This capability enables the generation of high-quality visualizations and positions AortaDiff as a practical solution for cardiovascular research.

Myocardial Native T1 Mapping in the German National Cohort (NAKO): Associations with Age, Sex, and Cardiometabolic Risk Factors

Ammann, C., Gröschel, J., Saad, H., Rospleszcz, S., Schuppert, C., Hadler, T., Hickstein, R., Niendorf, T., Nolde, J. M., Schulze, M. B., Greiser, K. H., Decker, J. A., Kröncke, T., Küstner, T., Nikolaou, K., Willich, S. N., Keil, T., Dörr, M., Bülow, R., Bamberg, F., Pischon, T., Schlett, C. L., Schulz-Menger, J.

medrxiv logopreprintJul 17 2025
Background and AimsIn cardiovascular magnetic resonance (CMR), myocardial native T1 mapping enables quantitative, non-invasive tissue characterization and is sensitive to subclinical changes in myocardial structure and composition. We investigated how age, sex, and cardiometabolic risk factors are associated with myocardial T1 in a population-based analysis within the German National Cohort (NAKO). MethodsThis cross-sectional study included 29,573 prospectively enrolled participants who underwent CMR-based midventricular T1 mapping at 3.0 T, alongside clinical phenotyping. After artificial intelligence-assisted myocardial segmentation, a subset of 9,162 outliers was subjected to manual quality control according to clinical evaluation standards. Associations with cardiometabolic risk factors, identified through self-reported medical history, clinical chemistry, and blood pressure measurements, were evaluated using adjusted linear regression models. ResultsWomen had higher T1 values than men, with sex differences progressively declining with age. T1 was significantly elevated in individuals with diabetes ({beta}=3.91 ms; p<0.001), kidney disease ({beta}=3.44 ms; p<0.001), and current smoking ({beta}=6.67 ms; p<0.001). Conversely, hyperlipidaemia was significantly associated with lower T1 ({beta}=-4.41 ms; p<0.001). Associations with hypertension showed a sex-specific pattern: T1 was lower in women but increased with hypertension severity in men. ConclusionsMyocardial native T1 varies by sex and age and shows associations with major cardiometabolic risk factors. Notably, lower T1 times in participants with hyperlipidaemia may indicate a direct effect of blood lipids on the heart. Our findings support the utility of T1 mapping as a sensitive marker of early myocardial changes and highlight the sex-specific interplay between cardiometabolic health and myocardial tissue composition. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=139 SRC="FIGDIR/small/25331651v1_ufig1.gif" ALT="Figure 1"> View larger version (44K): [email protected]@131514borg.highwire.dtl.DTLVardef@d03877org.highwire.dtl.DTLVardef@2b2fec_HPS_FORMAT_FIGEXP M_FIG C_FIG Key QuestionHow are age, sex, and cardiometabolic risk factors associated with myocardial native T1, a quantitative magnetic resonance imaging marker of myocardial tissue composition, in a large-scale population-based evaluation within the German National Cohort (NAKO)? Key FindingT1 relaxation times were higher in women and gradually converged between sexes with age. Diabetes, kidney disease, smoking, and hypertension in men were associated with prolonged T1 times. Unexpectedly, hyperlipidaemia and hypertension in women showed a negative association with T1. Take-Home MessageNative T1 mapping is sensitive to subclinical myocardial changes and reflects a close interplay between metabolic and myocardial health. It reveals marked age-dependent sex differences and sex-specific responses in myocardial tissue composition to cardiometabolic risk factors.
Page 16 of 38375 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.