Sort by:
Page 157 of 1601593 results

Alterations in static and dynamic functional network connectivity in chronic low back pain: a resting-state network functional connectivity and machine learning study.

Liu H, Wan X

pubmed logopapersMay 7 2025
Low back pain (LBP) is a prevalent pain condition whose persistence can lead to changes in the brain regions responsible for sensory, cognitive, attentional, and emotional processing. Previous neuroimaging studies have identified various structural and functional abnormalities in patients with LBP; however, how the static and dynamic large-scale functional network connectivity (FNC) of the brain is affected in these patients remains unclear. Forty-one patients with chronic low back pain (cLBP) and 42 healthy controls underwent resting-state functional MRI scanning. The independent component analysis method was employed to extract the resting-state networks. Subsequently, we calculate and compare between groups for static intra- and inter-network functional connectivity. In addition, we investigated the differences between dynamic functional network connectivity and dynamic temporal metrics between cLBP patients and healthy controls. Finally, we tried to distinguish cLBP patients from healthy controls by support vector machine method. The results showed that significant reductions in functional connectivity within the network were found within the DMN,DAN, and ECN in cLBP patients. Significant between-group differences were also found in static FNC and in each state of dynamic FNC. In addition, in terms of dynamic temporal metrics, fraction time and mean dwell time were significantly altered in cLBP patients. In conclusion, our study suggests the existence of static and dynamic large-scale brain network alterations in patients with cLBP. The findings provide insights into the neural mechanisms underlying various brain function abnormalities and altered pain experiences in patients with cLBP.

The added value of artificial intelligence using Quantib Prostate for the detection of prostate cancer at multiparametric magnetic resonance imaging.

Russo T, Quarta L, Pellegrino F, Cosenza M, Camisassa E, Lavalle S, Apostolo G, Zaurito P, Scuderi S, Barletta F, Marzorati C, Stabile A, Montorsi F, De Cobelli F, Brembilla G, Gandaglia G, Briganti A

pubmed logopapersMay 7 2025
Artificial intelligence (AI) has been proposed to assist radiologists in reporting multiparametric magnetic resonance imaging (mpMRI) of the prostate. We evaluate the diagnostic performance of radiologists with different levels of experience when reporting mpMRI with the support of available AI-based software (Quantib Prostate). This is a single-center study (NCT06298305) involving 110 patients. Those with a positive mpMRI (PI-RADS ≥ 3) underwent targeted plus systematic biopsy (TBx plus SBx), while those with a negative mpMRI but a high clinical suspicion of prostate cancer (PCa) underwent SBx. Three readers with different levels of experience, identified as R1, R2, and R3 reviewed all mpMRI. Inter-reader agreement among the three readers with or without the assistance of Quantib Prostate as well as sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy for the detection of clinically significant PCa (csPCa) were assessed. 102 patients underwent prostate biopsy and the csPCa detection rate was 47%. Using Quantib Prostate resulted in an increased number of lesions identified for R3 (101 vs. 127). Inter-reader agreement slightly increased when using Quantib Prostate from 0.37 to 0.41 without vs. with Quantib Prostate, respectively. PPV, NPV and diagnostic accuracy (measured by the area under the curve [AUC]) of R3 improved (0.51 vs. 0.55, 0.65 vs.0.82 and 0.56 vs. 0.62, respectively). Conversely, no changes were observed for R1 and R2. Using Quantib Prostate did not enhance the detection rate of csPCa for readers with some experience in prostate imaging. However, for an inexperienced reader, this AI-based software is demonstrated to improve the performance. Name of registry: clinicaltrials.gov. NCT06298305. Date of registration: 2022-09.

Hybrid method for automatic initialization and segmentation of ventricular on large-scale cardiovascular magnetic resonance images.

Pan N, Li Z, Xu C, Gao J, Hu H

pubmed logopapersMay 7 2025
Cardiovascular diseases are the number one cause of death globally, making cardiac magnetic resonance image segmentation a popular research topic. Existing schemas relying on manual user interaction or semi-automatic segmentation are infeasible when dealing thousands of cardiac MRI studies. Thus, we proposed a full automatic and robust algorithm for large-scale cardiac MRI segmentation by combining the advantages of deep learning localization and 3D-ASM restriction. The proposed method comprises several key techniques: 1) a hybrid network integrating CNNs and Transformer as a encoder with the EFG (Edge feature guidance) module (named as CTr-HNs) to localize the target regions of the cardiac on MRI images, 2) initial shape acquisition by alignment of coarse segmentation contours to the initial surface model of 3D-ASM, 3) refinement of the initial shape to cover all slices of MRI in the short axis by complex transformation. The datasets used are from the UK BioBank and the CAP (Cardiac Atlas Project). In cardiac coarse segmentation experiments on MR images, Dice coefficients (Dice), mean contour distances (MCD), and mean Hausdorff distances (HD95) are used to evaluate segmentation performance. In SPASM experiments, Point-to-surface (P2S) distances, Dice score are compared between automatic results and ground truth. The CTr-HNs from our proposed method achieves Dice coefficients (Dice), mean contour distances (MCD), and mean Hausdorff distances (HD95) of 0.95, 0.10 and 1.54 for the LV segmentation respectively, 0.88, 0.13 and 1.94 for the LV myocardium segmentation, and 0.91, 0.24 and 3.25 for the RV segmentation. The overall P2S errors from our proposed schema is 1.45 mm. For endocardium and epicardium, the Dice scores are 0.87 and 0.91 respectively. Our experimental results show that the proposed schema can automatically analyze large-scale quantification from population cardiac images with robustness and accuracy.

V3DQutrit a volumetric medical image segmentation based on 3D qutrit optimized modified tensor ring model.

Verma P, Kumar H, Shukla DK, Satpathy S, Alsekait DM, Khalaf OI, Alzoubi A, Alqadi BS, AbdElminaam DS, Kushwaha A, Singh J

pubmed logopapersMay 6 2025
This paper introduces 3D-QTRNet, a novel quantum-inspired neural network for volumetric medical image segmentation. Unlike conventional CNNs, which suffer from slow convergence and high complexity, and QINNs, which are limited to grayscale segmentation, our approach leverages qutrit encoding and tensor ring decomposition. These techniques improve segmentation accuracy, optimize memory usage, and accelerate model convergence. The proposed model demonstrates superior performance on the BRATS19 and Spleen datasets, outperforming state-of-the-art CNN and quantum models in terms of Dice similarity and segmentation precision. This work bridges the gap between quantum computing and medical imaging, offering a scalable solution for real-world applications.

Phenotype-Guided Generative Model for High-Fidelity Cardiac MRI Synthesis: Advancing Pretraining and Clinical Applications

Ziyu Li, Yujian Hu, Zhengyao Ding, Yiheng Mao, Haitao Li, Fan Yi, Hongkun Zhang, Zhengxing Huang

arxiv logopreprintMay 6 2025
Cardiac Magnetic Resonance (CMR) imaging is a vital non-invasive tool for diagnosing heart diseases and evaluating cardiac health. However, the limited availability of large-scale, high-quality CMR datasets poses a major challenge to the effective application of artificial intelligence (AI) in this domain. Even the amount of unlabeled data and the health status it covers are difficult to meet the needs of model pretraining, which hinders the performance of AI models on downstream tasks. In this study, we present Cardiac Phenotype-Guided CMR Generation (CPGG), a novel approach for generating diverse CMR data that covers a wide spectrum of cardiac health status. The CPGG framework consists of two stages: in the first stage, a generative model is trained using cardiac phenotypes derived from CMR data; in the second stage, a masked autoregressive diffusion model, conditioned on these phenotypes, generates high-fidelity CMR cine sequences that capture both structural and functional features of the heart in a fine-grained manner. We synthesized a massive amount of CMR to expand the pretraining data. Experimental results show that CPGG generates high-quality synthetic CMR data, significantly improving performance on various downstream tasks, including diagnosis and cardiac phenotypes prediction. These gains are demonstrated across both public and private datasets, highlighting the effectiveness of our approach. Code is availabel at https://anonymous.4open.science/r/CPGG.

Real-time brain tumour diagnoses using a novel lightweight deep learning model.

Alnageeb MHO, M H S

pubmed logopapersMay 6 2025
Brain tumours continue to be a primary cause of worldwide death, highlighting the critical need for effective and accurate diagnostic tools. This article presents MK-YOLOv8, an innovative lightweight deep learning framework developed for the real-time detection and categorization of brain tumours from MRI images. Based on the YOLOv8 architecture, the proposed model incorporates Ghost Convolution, the C3Ghost module, and the SPPELAN module to improve feature extraction and substantially decrease computational complexity. An x-small object detection layer has been added, supporting precise detection of small and x-small tumours, which is crucial for early diagnosis. Trained on the Figshare Brain Tumour (FBT) dataset comprising (3,064) MRI images, MK-YOLOv8 achieved a mean Average Precision (mAP) of 99.1% at IoU (0.50) and 88.4% at IoU (0.50-0.95), outperforming YOLOv8 (98% and 78.8%, respectively). Glioma recall improved by 26%, underscoring the enhanced sensitivity to challenging tumour types. With a computational footprint of only 96.9 GFLOPs (representing 37.5% of YOYOLOv8x'sFLOPs) and utilizing 12.6 million parameters, a mere 18.5% of YOYOLOv8's parameters, MK-YOLOv8 delivers high efficiency with reduced resource demands. Also, it trained on the Br35H dataset (801 images) to guarantee the model's robustness and generalization; it achieved a mAP of 98.6% at IoU (0.50). The suggested model operates at 62 frames per second (FPS) and is suited for real-time clinical processes. These developments establish MK-YOLOv8 as an innovative framework, overcoming challenges in tiny tumour identification and providing a generalizable, adaptable, and precise detection approach for brain tumour diagnostics in clinical settings.

Multi-task learning for joint prediction of breast cancer histological indicators in dynamic contrast-enhanced magnetic resonance imaging.

Sun R, Li X, Han B, Xie Y, Nie S

pubmed logopapersMay 6 2025
Achieving efficient analysis of multiple pathological indicators has great significance for breast cancer prognosis and therapeutic decision-making. In this study, we aim to explore a deep multi-task learning (MTL) framework for collaborative prediction of histological grade and proliferation marker (Ki-67) status in breast cancer using multi-phase dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). In the novel design of hybrid multi-task architecture (HMT-Net), co-representative features are explicitly distilled using a feature extraction backbone. A customized prediction network is then introduced to perform soft-parameter sharing between two correlated tasks. Specifically, task-common and task-specific knowledge is transmitted into tower layers for informative interactions. Furthermore, low-level feature maps containing tumor edges and texture details are recaptured by a hard-parameter sharing branch, which are then incorporated into the tower layer for each subtask. Finally, the probabilities of two histological indicators, predicted in the multi-phase DCE-MRI, are separately fused using a decision-level fusion strategy. Experimental results demonstrate that the proposed HMT-Net achieves optimal discriminative performance over other recent MTL architectures and deep models based on single image series, with the area under the receiver operating characteristic curve of 0.908 for tumor grade and 0.694 for Ki-67 status. Benefiting from the innovative HMT-Net, our proposed method elucidates its strong robustness and flexibility in the collaborative prediction task of breast biomarkers. Multi-phase DCE-MRI is expected to contribute valuable dynamic information for breast cancer pathological assessment in a non-invasive manner.

Brain connectome gradient dysfunction in patients with end-stage renal disease and its association with clinical phenotype and cognitive deficits.

Li P, Li N, Ren L, Yang YP, Zhu XY, Yuan HJ, Luo ZY, Mu JY, Wang W, Zhang M

pubmed logopapersMay 6 2025
A cortical hierarchical architecture is vital for encoding and integrating sensorimotor-to-cognitive information. However, whether this gradient structure is disrupted in end-stage renal disease (ESRD) patients and how this disruption provides valuable information for potential clinical symptoms remain unknown. We prospectively enrolled 77 ESRD patients and 48 healthy controls. Using resting-state functional magnetic resonance imaging, we studied ESRD-related hierarchical alterations. The Neurosynth platform and machine-learning models with 10-fold cross-validation were applied. ESRD patients had abnormal gradient metrics in core regions of the default mode network, sensorimotor network, and frontoparietal network. These changes correlated with creatinine, depression, and cognitive functions. A logistic regression classifier achieved a maximum performance of 84.8% accuracy and 0.901 area under the ROC curve (AUC). Our results highlight hierarchical imbalances in ESRD patients that correlate with diverse cognitive deficits, which may be used as potential neuroimaging markers for clinical symptoms.

A novel transfer learning framework for non-uniform conductivity estimation with limited data in personalized brain stimulation.

Kubota Y, Kodera S, Hirata A

pubmed logopapersMay 6 2025
<i>Objective</i>. Personalized transcranial magnetic stimulation (TMS) requires individualized head models that incorporate non-uniform conductivity to enable target-specific stimulation. Accurately estimating non-uniform conductivity in individualized head models remains a challenge due to the difficulty of obtaining precise ground truth data. To address this issue, we have developed a novel transfer learning-based approach for automatically estimating non-uniform conductivity in a human head model with limited data.<i>Approach</i>. The proposed method complements the limitations of the previous conductivity network (CondNet) and improves the conductivity estimation accuracy. This method generates a segmentation model from T1- and T2-weighted magnetic resonance images, which is then used for conductivity estimation via transfer learning. To enhance the model's representation capability, a Transformer was incorporated into the segmentation model, while the conductivity estimation model was designed using a combination of Attention Gates and Residual Connections, enabling efficient learning even with a small amount of data.<i>Main results</i>. The proposed method was evaluated using 1494 images, demonstrating a 2.4% improvement in segmentation accuracy and a 29.1% increase in conductivity estimation accuracy compared with CondNet. Furthermore, the proposed method achieved superior conductivity estimation accuracy even with only three training cases, outperforming CondNet, which was trained on an adequate number of cases. The conductivity maps generated by the proposed method yielded better results in brain electrical field simulations than CondNet.<i>Significance</i>. These findings demonstrate the high utility of the proposed method in brain electrical field simulations and suggest its potential applicability to other medical image analysis tasks and simulations.

Corticospinal tract reconstruction with tumor by using a novel direction filter based tractography method.

Zeng Q, Xia Z, Huang J, Xie L, Zhang J, Huang S, Xing Z, Zhuge Q, Feng Y

pubmed logopapersMay 6 2025
The corticospinal tract (CST) is the primary neural pathway responsible for voluntary motor functions, and preoperative CST reconstruction is crucial for preserving nerve functions during neurosurgery. Diffusion magnetic resonance imaging-based tractography is the only noninvasive method to preoperatively reconstruct CST in clinical practice. However, for the largesize bundle CST with complex fiber geometry (fanning fibers), reconstructing its full extent remains challenging with local-derived methods without incorporating global information. Especially in the presence of tumors, the mass effect and partial volume effect cause abnormal diffusion signals. In this work, a CST reconstruction tractography method based on a novel direction filter was proposed, designed to ensure robust CST reconstruction in the clinical dataset with tumors. A direction filter based on a fourth-order differential equation was introduced for global direction estimation. By considering the spatial consistency and leveraging anatomical prior knowledge, the direction filter was computed by minimizing the energy between the target directions and initial fiber directions. On the basis of the new directions corresponding to CST obtained by the direction filter, the fiber tracking method was implemented to reconstruct the fiber trajectory. Additionally, a deep learning-based method along with tractography template prior information was employed to generate the regions of interest (ROIs) and initial fiber directions. Experimental results showed that the proposed method yields higher valid connections and lower no connections and exhibits the fewest broken fibers and short-connected fibers. The proposed method offers an effective tool to enhance CST-related surgical outcomes by optimizing tumor resection and preserving CST.
Page 157 of 1601593 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.