Sort by:
Page 15 of 25249 results

Whole-lesion-aware network based on freehand ultrasound video for breast cancer assessment: a prospective multicenter study.

Han J, Gao Y, Huo L, Wang D, Xie X, Zhang R, Xiao M, Zhang N, Lei M, Wu Q, Ma L, Sun C, Wang X, Liu L, Cheng S, Tang B, Wang L, Zhu Q, Wang Y

pubmed logopapersJun 16 2025
The clinical application of artificial intelligence (AI) models based on breast ultrasound static images has been hindered in real-world workflows due to operator-dependence of standardized image acquisition and incomplete view of breast lesions on static images. To better exploit the real-time advantages of ultrasound and more conducive to clinical application, we proposed a whole-lesion-aware network based on freehand ultrasound video (WAUVE) scanning in an arbitrary direction for predicting overall breast cancer risk score. The WAUVE was developed using 2912 videos (2912 lesions) of 2771 patients retrospectively collected from May 2020 to August 2022 in two hospitals. We compared the diagnostic performance of WAUVE with static 2D-ResNet50 and dynamic TimeSformer models in the internal validation set. Subsequently, a dataset comprising 190 videos (190 lesions) from 175 patients prospectively collected from December 2022 to April 2023 in two other hospitals, was used as an independent external validation set. A reader study was conducted by four experienced radiologists on the external validation set. We compared the diagnostic performance of WAUVE with the four experienced radiologists and evaluated the auxiliary value of model for radiologists. The WAUVE demonstrated superior performance compared to the 2D-ResNet50 model, while similar to the TimeSformer model. In the external validation set, WAUVE achieved an area under the receiver operating characteristic curve (AUC) of 0.8998 (95% CI = 0.8529-0.9439), and showed a comparable diagnostic performance to that of four experienced radiologists in terms of sensitivity (97.39% vs. 98.48%, p = 0.36), specificity (49.33% vs. 50.00%, p = 0.92), and accuracy (78.42% vs.79.34%, p = 0.60). With the WAUVE model assistance, the average specificity of four experienced radiologists was improved by 6.67%, and higher consistency was achieved (from 0.807 to 0.838). The WAUVE based on non-standardized ultrasound scanning demonstrated excellent performance in breast cancer assessment which yielded outcomes similar to those of experienced radiologists, indicating the clinical application of the WAUVE model promising.

Roadmap analysis for coronary artery stenosis detection and percutaneous coronary intervention prediction in cardiac CT for transcatheter aortic valve replacement.

Fujito H, Jilaihawi H, Han D, Gransar H, Hashimoto H, Cho SW, Lee S, Gheyath B, Park RH, Patel D, Guo Y, Kwan AC, Hayes SW, Thomson LEJ, Slomka PJ, Dey D, Makkar R, Friedman JD, Berman DS

pubmed logopapersJun 16 2025
The new artificial intelligence-based software, Roadmap (HeartFlow), may assist in evaluating coronary artery stenosis during cardiac computed tomography (CT) for transcatheter aortic valve replacement (TAVR). Consecutive TAVR candidates who underwent both cardiac CT angiography (CTA) and invasive coronary angiography were enrolled. We evaluated the ability of three methods to predict obstructive coronary artery disease (CAD), defined as ≥50 ​% stenosis on quantitative coronary angiography (QCA), and the need for percutaneous coronary intervention (PCI) within one year: Roadmap, clinician CT specialists with Roadmap, and CT specialists alone. The area under the curve (AUC) for predicting QCA ≥50 ​% stenosis was similar for CT specialists with or without Roadmap (0.93 [0.85-0.97] vs. 0.94 [0.88-0.98], p ​= ​0.82), both significantly higher than Roadmap alone (all p ​< ​0.05). For PCI prediction, no significant differences were found between QCA and CT specialists, with or without Roadmap, while Roadmap's AUC was lower (all p ​< ​0.05). The negative predictive value (NPV) of CT specialists with Roadmap for ≥50 ​% stenosis was 97 ​%, and for PCI prediction, the NPV was comparable to QCA (p ​= ​1.00). In contrast, the positive predictive value (PPV) of Roadmap alone for ≥50 ​% stenosis was 49 ​%, the lowest among all approaches, with a similar trend observed for PCI prediction. While Roadmap alone is insufficient for clinical decision-making due to low PPV, Roadmap may serve as a "second observer", providing a supportive tool for CT specialists by flagging lesions for careful review, thereby enhancing workflow efficiency and maintaining high diagnostic accuracy with excellent NPV.

First experiences with an adaptive pelvic radiotherapy system: Analysis of treatment times and learning curve.

Benzaquen D, Taussky D, Fave V, Bouveret J, Lamine F, Letenneur G, Halley A, Solmaz Y, Champion A

pubmed logopapersJun 16 2025
The Varian Ethos system allows not only on-treatment-table plan adaptation but also automated contouring with the aid of artificial intelligence. This study evaluates the initial clinical implementation of an adaptive pelvic radiotherapy system, focusing on the treatment times and the associated learning curve. We analyzed the data from 903 consecutive treatments for most urogenital cancers at our center. The treatment time was calculated from the time of the first cone-beam computed tomography scan used for replanning until the end of treatment. To calculate whether treatments were generally shorter over time, we divided the date of the first treatment into 3-months quartiles. Differences between the groups were calculated using t-tests. The mean time from the first cone-beam computed tomography scan to the end of treatment was 25.9min (standard deviation: 6.9min). Treatment time depended on the number of planning target volumes and treatment of the pelvic lymph nodes. The mean time from cone-beam computed tomography to the end of treatment was 37 % longer if the pelvic lymph nodes were treated and 26 % longer if there were more than two planning target volumes. There was a learning curve: in linear regression analysis, both quartiles of months of treatment (odds ratio [OR]: 1.3, 95 % confidence interval [CI]: 1.8-0.70, P<0.001) and the number of planning target volumes (OR: 3.0, 95 % CI: 2.6-3.4, P<0.001) were predictive of treatment time. Approximately two-thirds of the treatments were delivered within 33min. Treatment time was strongly dependent on the number of separate planning target volumes. There was a continuous learning curve.

Feasibility of Ultralow-Dose CT With Deep-Learning Reconstruction for Aneurysm Diameter Measurement in Post-EVAR Follow-Up: A Prospective Comparative Study With Conventional CT.

Matsushiro K, Okada T, Sasaki K, Gentsu T, Ueshima E, Sofue K, Yamanaka K, Hori M, Yamaguchi M, Sugimoto K, Okada K, Murakami T

pubmed logopapersJun 16 2025
We conducted a prospective study to evaluate the usefulness of ultralow-dose computed tomography (ULD-CT) with deep-learning reconstruction (DLR) compared with conventional standard-dose CT (SD-CT) for post-endovascular aneurysm repair (EVAR) surveillance. We prospectively performed post-EVAR surveillance using ULD-CT at a single center in 44 patients after they had received SD-CT. The ULD-CT images underwent DLR, whereas the SD-CT images underwent iterative reconstruction. Three radiologists blinded to the patient information and CT conditions independently measured the aneurysmal sac diameter and evaluated the overall image quality. Bland-Altman analysis and a linear mixed-effects model were used to assess and compare the measurement accuracy between SD-CT and ULD-CT. The mean CT dose index volume and dose-length product were significantly lower for ULD-CT (1.0 ± 0.3 mGy and 71.4 ± 26.5 mGy•cm) than that for SD-CT (6.9 ± 0.9 mGy and 500.9 ± 96.0 mGy•cm; p<0.001). The mean short diameters of the aneurysmal sac measured by the 3 observers were 46.7 ± 10.8 mm on SD-CT and 46.3 ± 10.8 mm on ULD-CT. The mean difference in the short diameter of the aneurysmal sac between ULD-CT and SD-CT was -0.37 mm (95% confidence interval, -0.6 to -0.12 mm). The intraobserver limits of agreement (LOA) for measurements by ULD-CT and SD-CT were -3.5 to 2.6, -2.8 to 1.9, and -2.9 to 2.3 for Observers 1, 2, and 3, respectively. The pairwise LOAs for assessing interobserver agreement, such as for the differences between Observers 1 and 2 measurements in SD-CT, were mostly within the predetermined acceptable range. The mean image-quality score was lower for ULD-CT (3.3 ± 0.6) than that for SD-CT (4.5 ± 0.5; p<0.001). Aneurysmal sac diameter measurements by ULD-CT with DLR were sufficiently accurate for post-EVAR surveillance, with substantial radiation reduction versus SD-CT.Clinical ImpactDeep-learning reconstruction (DLR) is implemented as a software-based algorithm rather than requiring dedicated hardware. As such, it is expected to be integrated into standard computed tomography (CT) systems in the near future. The ultralow-dose CT (ULD-CT) with DLR evaluated in this study has the potential to become widely accessible across various institutions. This advancement could substantially reduce radiation exposure in post-endovascular aneurysm repair (EVAR) CT imaging, thereby facilitating its adoption as a standard modality for post-EVAR surveillance.

Artificial intelligence for age-related macular degeneration diagnosis in Australia: A Novel Qualitative Interview Study.

Ly A, Herse S, Williams MA, Stapleton F

pubmed logopapersJun 14 2025
Artificial intelligence (AI) systems for age-related macular degeneration (AMD) diagnosis abound but are not yet widely implemented. AI implementation is complex, requiring the involvement of multiple, diverse stakeholders including technology developers, clinicians, patients, health networks, public hospitals, private providers and payers. There is a pressing need to investigate how AI might be adopted to improve patient outcomes. The purpose of this first study of its kind was to use the AI translation extended version of the non-adoption, abandonment, scale-up, spread and sustainability of healthcare technologies framework to explore stakeholder experiences, attitudes, enablers, barriers and possible futures of digital diagnosis using AI for AMD and eyecare in Australia. Semi-structured, online interviews were conducted with 37 stakeholders (12 clinicians, 10 healthcare leaders, 8 patients and 7 developers) from September 2022 to March 2023. The interviews were audio-recorded, transcribed and analysed using directed and summative content analysis. Technological features influencing implementation were most frequently discussed, followed by the context or wider system, value proposition, adopters, organisations, the condition and finally embedding the adaptation. Patients preferred to focus on the condition, while healthcare leaders elaborated on organisation factors. Overall, stakeholders supported a portable, device-independent clinical decision support tool that could be integrated with existing diagnostic equipment and patient management systems. Opportunities for AI to drive new models of healthcare, patient education and outreach, and the importance of maintaining equity across population groups were consistently emphasised. This is the first investigation to report numerous, interacting perspectives on the adoption of digital diagnosis for AMD in Australia, incorporating an intentionally diverse stakeholder group and the patient voice. It provides a series of practical considerations for the implementation of AI and digital diagnosis into existing care for people with AMD.

Utility of Thin-slice Single-shot T2-weighted MR Imaging with Deep Learning Reconstruction as a Protocol for Evaluating Pancreatic Cystic Lesions.

Ozaki K, Hasegawa H, Kwon J, Katsumata Y, Yoneyama M, Ishida S, Iyoda T, Sakamoto M, Aramaki S, Tanahashi Y, Goshima S

pubmed logopapersJun 14 2025
To assess the effects of industry-developed deep learning reconstruction with super resolution (DLR-SR) on single-shot turbo spin-echo (SshTSE) images with thickness of 2 mm with DLR (SshTSE<sup>2mm</sup>) relative to those of images with a thickness of 5 mm with DLR (SSshTSE<sup>5mm</sup>) in the patients with pancreatic cystic lesions. Thirty consecutive patients who underwent abdominal MRI examinations because of pancreatic cystic lesions under observation between June 2024 and July 2024 were enrolled. We qualitatively and quantitatively evaluated the image qualities of SshTSE<sup>2mm</sup> and SshTSE<sup>5mm</sup> with and without DLR-SR. The SNRs of the pancreas, spleen, paraspinal muscle, peripancreatic fat, and pancreatic cystic lesions of SshTSE<sup>2mm</sup> with and without DLR-SR did not decrease in compared to that of SshTSE<sup>5mm</sup> with and without DLR-SR. There were no significant differences in contrast-to-noise ratios (CNRs) of the pancreas-to-cystic lesions and fat between 4 types of images. SshTSE<sup>2mm</sup> with DLR-SR had the highest image quality related to pancreas edge sharpness, perceived coarseness pancreatic duct clarity, noise, artifacts, overall image quality, and diagnostic confidence of cystic lesions, followed by SshTSE<sup>2mm</sup> without DLR-SR and SshTSE<sup>5mm</sup> with and without DLR-SR (P  <  0.0001). SshTSE<sup>2mm</sup> with DLR-SR images had better quality than the other images and did not have decreased SNRs and CNRs. The thin-slice SshTSE with DLR-SR may be feasible and clinically useful for the evaluation of patients with pancreatic cystic lesions.

CEREBLEED: Automated quantification and severity scoring of intracranial hemorrhage on non-contrast CT

Cepeda, S., Esteban-Sinovas, O., Arrese, I., Sarabia, R.

medrxiv logopreprintJun 13 2025
BackgroundIntracranial hemorrhage (ICH), whether spontaneous or traumatic, is a neurological emergency with high morbidity and mortality. Accurate assessment of severity is essential for neurosurgical decision-making. This study aimed to develop and evaluate a fully automated, deep learning-based tool for the standardized assessment of ICH severity, based on the segmentation of the hemorrhage and intracranial structures, and the computation of an objective severity index. MethodsNon-contrast cranial CT scans from patients with spontaneous or traumatic ICH were retrospectively collected from public datasets and a tertiary care center. Deep learning models were trained to segment hemorrhages and intracranial structures. These segmentations were used to compute a severity index reflecting bleeding burden and mass effect through volumetric relationships. Segmentation performance was evaluated on a hold-out test cohort. In a prospective cohort, the severity index was assessed in relation to expert-rated CT severity, clinical outcomes, and the need for urgent neurosurgical intervention. ResultsA total of 1,110 non-contrast cranial CT scans were analyzed, 900 from the retrospective cohort and 200 from the prospective evaluation cohort. The binary segmentation model achieved a median Dice score of 0.90 for total hemorrhage. The multilabel model yielded Dice scores ranging from 0.55 to 0.94 across hemorrhage subtypes. The severity index significantly correlated with expert-rated CT severity (p < 0.001), the modified Rankin Scale (p = 0.007), and the Glasgow Outcome Scale-Extended (p = 0.039), and independently predicted the need for urgent surgery (p < 0.001). A threshold [~]300 was identified as a decision point for surgical management (AUC = 0.83). ConclusionWe developed a fully automated and openly accessible pipeline for the analysis of non-contrast cranial CT in intracranial hemorrhage. It computes a novel index that objectively quantifies hemorrhage severity and is significantly associated with clinically relevant outcomes, including the need for urgent neurosurgical intervention.

Quantitative and qualitative assessment of ultra-low-dose paranasal sinus CT using deep learning image reconstruction: a comparison with hybrid iterative reconstruction.

Otgonbaatar C, Lee D, Choi J, Jang H, Shim H, Ryoo I, Jung HN, Suh S

pubmed logopapersJun 13 2025
This study aimed to evaluate the quantitative and qualitative performances of ultra-low-dose computed tomography (CT) with deep learning image reconstruction (DLR) compared with those of hybrid iterative reconstruction (IR) for preoperative paranasal sinus (PNS) imaging. This retrospective analysis included 132 patients who underwent non-contrast ultra-low-dose sinus CT (0.03 mSv). Images were reconstructed using hybrid IR and DLR. Objective image quality metrics, including image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), noise power spectrum (NPS), and no-reference perceptual image sharpness, were assessed. Two board-certified radiologists independently performed subjective image quality evaluations. The ultra-low-dose CT protocol achieved a low radiation dose (effective dose: 0.03 mSv). DLR showed significantly lower image noise (28.62 ± 4.83 Hounsfield units) compared to hybrid IR (140.70 ± 16.04, p < 0.001), with DLR yielding smoother and more uniform images. DLR demonstrated significantly improved SNR (22.47 ± 5.82 vs 9.14 ± 2.45, p < 0.001) and CNR (71.88 ± 14.03 vs 11.81 ± 1.50, p < 0.001). NPS analysis revealed that DLR reduced the noise magnitude and NPS peak values. Additionally, DLR demonstrated significantly sharper images (no-reference perceptual sharpness metric: 0.56 ± 0.04) compared to hybrid IR (0.36 ± 0.01). Radiologists rated DLR as superior in overall image quality, bone structure visualization, and diagnostic confidence compared to hybrid IR at ultra-low-dose CT. DLR significantly outperformed hybrid IR in ultra-low-dose PNS CT by reducing image noise, improving SNR and CNR, enhancing image sharpness, and maintaining critical anatomical visualization, demonstrating its potential for effective preoperative planning with minimal radiation exposure. Question Ultra-low-dose CT for paranasal sinuses is essential for patients requiring repeated scans and functional endoscopic sinus surgery (FESS) planning to reduce cumulative radiation exposure. Findings DLR outperformed hybrid IR in ultra-low-dose paranasal sinus CT. Clinical relevance Ultra-low-dose CT with DLR delivers sufficient image quality for detailed surgical planning, effectively minimizing unnecessary radiation exposure to enhance patient safety.

Non-invasive multi-phase CT artificial intelligence for predicting pre-treatment enlarged lymph node status in colorectal cancer: a prospective validation study.

Sun K, Wang J, Wang B, Wang Y, Lu S, Jiang Z, Fu W, Zhou X

pubmed logopapersJun 12 2025
Benign lymph node enlargement can mislead surgeons into overstaging colorectal cancer (CRC), causing unnecessarily extended lymphadenectomy. This study aimed to develop and validate a machine learning (ML) classifier utilizing multi-phase CT (MPCT) radiomics for accurate evaluation of the pre-treatment status of enlarged tumor-draining lymph nodes (TDLNs; defined as long-axis diameter ≥ 10 mm). This study included 430 pathologically confirmed CRC patients who underwent radical resection, stratified into a development cohort (n = 319; January 2015-December 2019, retrospectively enrolled) and test cohort (n = 111; January 2020-May 2023, prospectively enrolled). Radiomics features were extracted from multi-regional lesions (tumor and enlarged TDLNs) on MPCT. Following rigorous feature selection, optimal features were employed to train multiple ML classifiers. The top-performing classifier based on area under receiver operating characteristic curves (AUROCs) was validated. Ultimately, 15 classifiers based on features from multi-regional lesions were constructed (Tumor<sub>N, A</sub>, <sub>V</sub>; Ln<sub>N</sub>, <sub>A</sub>, <sub>V</sub>; Ln, lymph node; <sub>N</sub>, non-contrast phase; <sub>A</sub>, arterial phase; <sub>V</sub>, venous phase). Among all classifiers, the enlarged TDLNs fusion MPCT classifier (Ln<sub>NAV</sub>) demonstrated the highest predictive efficacy, with AUROCs and AUPRCs of 0.820 and 0.883, respectively. When pre-treatment clinical variables were integrated (Clinical_Ln<sub>NAV</sub>), the model's efficacy improved, with AUROCs of 0.839, AUPRCs of 0.903, accuracy of 76.6%, sensitivity of 67.7%, and specificity of 89.1%. The classifier Clinical_Ln<sub>NAV</sub> demonstrated well performance in evaluating pre-treatment status of enlarged TDLNs. This tool may support clinicians in developing individualized treatment plans for CRC patients, helping to avoid inappropriate treatment. Question There are currently no effective non-invasive tools to assess the status of enlarged tumor-draining lymph nodes in colorectal cancer prior to treatment. Findings Pre-treatment multi-phase CT radiomics, combined with clinical variables, effectively assessed the status of enlarged tumor-draining lymph nodes, achieving a specificity of 89.1%. Clinical relevance statement The multi-phase CT-based classifier may assist clinicians in developing individualized treatment plans for colorectal cancer patients, potentially helping to avoid inappropriate preoperative adjuvant therapy and unnecessary extended lymphadenectomy.

CT derived fractional flow reserve: Part 2 - Critical appraisal of the literature.

Rodriguez-Lozano PF, Waheed A, Evangelou S, Kolossváry M, Shaikh K, Siddiqui S, Stipp L, Lakshmanan S, Wu EH, Nurmohamed NS, Orbach A, Baliyan V, de Matos JFRG, Trivedi SJ, Madan N, Villines TC, Ihdayhid AR

pubmed logopapersJun 12 2025
The integration of computed tomography-derived fractional flow reserve (CT-FFR), utilizing computational fluid dynamics and artificial intelligence (AI) in routine coronary computed tomographic angiography (CCTA), presents a promising approach to enhance evaluations of functional lesion severity. Extensive evidence underscores the diagnostic accuracy, prognostic significance, and clinical relevance of CT-FFR, prompting recent clinical guidelines to recommend its combined use with CCTA for selected individuals with with intermediate stenosis on CCTA and stable or acute chest pain. This manuscript critically examines the existing clinical evidence, evaluates the diagnostic performance, and outlines future perspectives for integrating noninvasive assessments of coronary anatomy and physiology. Furthermore, it serves as a practical guide for medical imaging professionals by addressing common pitfalls and challenges associated with CT-FFR while proposing potential solutions to facilitate its successful implementation in clinical practice.
Page 15 of 25249 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.