CEREBLEED: Automated quantification and severity scoring of intracranial hemorrhage on non-contrast CT

Authors

Cepeda, S.,Esteban-Sinovas, O.,Arrese, I.,Sarabia, R.

Affiliations (1)

  • University Hospital Rio Hortega

Abstract

BackgroundIntracranial hemorrhage (ICH), whether spontaneous or traumatic, is a neurological emergency with high morbidity and mortality. Accurate assessment of severity is essential for neurosurgical decision-making. This study aimed to develop and evaluate a fully automated, deep learning-based tool for the standardized assessment of ICH severity, based on the segmentation of the hemorrhage and intracranial structures, and the computation of an objective severity index. MethodsNon-contrast cranial CT scans from patients with spontaneous or traumatic ICH were retrospectively collected from public datasets and a tertiary care center. Deep learning models were trained to segment hemorrhages and intracranial structures. These segmentations were used to compute a severity index reflecting bleeding burden and mass effect through volumetric relationships. Segmentation performance was evaluated on a hold-out test cohort. In a prospective cohort, the severity index was assessed in relation to expert-rated CT severity, clinical outcomes, and the need for urgent neurosurgical intervention. ResultsA total of 1,110 non-contrast cranial CT scans were analyzed, 900 from the retrospective cohort and 200 from the prospective evaluation cohort. The binary segmentation model achieved a median Dice score of 0.90 for total hemorrhage. The multilabel model yielded Dice scores ranging from 0.55 to 0.94 across hemorrhage subtypes. The severity index significantly correlated with expert-rated CT severity (p < 0.001), the modified Rankin Scale (p = 0.007), and the Glasgow Outcome Scale-Extended (p = 0.039), and independently predicted the need for urgent surgery (p < 0.001). A threshold [~]300 was identified as a decision point for surgical management (AUC = 0.83). ConclusionWe developed a fully automated and openly accessible pipeline for the analysis of non-contrast cranial CT in intracranial hemorrhage. It computes a novel index that objectively quantifies hemorrhage severity and is significantly associated with clinically relevant outcomes, including the need for urgent neurosurgical intervention.

Topics

neurology

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.