Feasibility of Ultralow-Dose CT With Deep-Learning Reconstruction for Aneurysm Diameter Measurement in Post-EVAR Follow-Up: A Prospective Comparative Study With Conventional CT.
Authors
Affiliations (3)
Affiliations (3)
- Department of Diagnostic and Interventional Radiology, Kobe University Hospital, Kobe, Japan.
- Department of Radiology, Kindai University Faculty of Medicine, Osakasayama, Japan.
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Hospital, Kobe, Japan.
Abstract
We conducted a prospective study to evaluate the usefulness of ultralow-dose computed tomography (ULD-CT) with deep-learning reconstruction (DLR) compared with conventional standard-dose CT (SD-CT) for post-endovascular aneurysm repair (EVAR) surveillance. We prospectively performed post-EVAR surveillance using ULD-CT at a single center in 44 patients after they had received SD-CT. The ULD-CT images underwent DLR, whereas the SD-CT images underwent iterative reconstruction. Three radiologists blinded to the patient information and CT conditions independently measured the aneurysmal sac diameter and evaluated the overall image quality. Bland-Altman analysis and a linear mixed-effects model were used to assess and compare the measurement accuracy between SD-CT and ULD-CT. The mean CT dose index volume and dose-length product were significantly lower for ULD-CT (1.0 ± 0.3 mGy and 71.4 ± 26.5 mGy•cm) than that for SD-CT (6.9 ± 0.9 mGy and 500.9 ± 96.0 mGy•cm; p<0.001). The mean short diameters of the aneurysmal sac measured by the 3 observers were 46.7 ± 10.8 mm on SD-CT and 46.3 ± 10.8 mm on ULD-CT. The mean difference in the short diameter of the aneurysmal sac between ULD-CT and SD-CT was -0.37 mm (95% confidence interval, -0.6 to -0.12 mm). The intraobserver limits of agreement (LOA) for measurements by ULD-CT and SD-CT were -3.5 to 2.6, -2.8 to 1.9, and -2.9 to 2.3 for Observers 1, 2, and 3, respectively. The pairwise LOAs for assessing interobserver agreement, such as for the differences between Observers 1 and 2 measurements in SD-CT, were mostly within the predetermined acceptable range. The mean image-quality score was lower for ULD-CT (3.3 ± 0.6) than that for SD-CT (4.5 ± 0.5; p<0.001). Aneurysmal sac diameter measurements by ULD-CT with DLR were sufficiently accurate for post-EVAR surveillance, with substantial radiation reduction versus SD-CT.Clinical ImpactDeep-learning reconstruction (DLR) is implemented as a software-based algorithm rather than requiring dedicated hardware. As such, it is expected to be integrated into standard computed tomography (CT) systems in the near future. The ultralow-dose CT (ULD-CT) with DLR evaluated in this study has the potential to become widely accessible across various institutions. This advancement could substantially reduce radiation exposure in post-endovascular aneurysm repair (EVAR) CT imaging, thereby facilitating its adoption as a standard modality for post-EVAR surveillance.