Sort by:
Page 15 of 42416 results

The Chest X- Ray: The Ship has Sailed, But Has It?

Iacovino JR

pubmed logopapersJul 1 2025
In the past, the chest X-ray (CXR) was a traditional age and amount requirement used to assess potential mortality risk in life insurance applicants. It fell out of favor due to inconvenience to the applicant, cost, and lack of protective value. With the advent of deep learning techniques, can the results of the CXR, as a requirement, now add additional value to underwriting risk analysis?

Repeatability of AI-based, automatic measurement of vertebral and cardiovascular imaging biomarkers in low-dose chest CT: the ImaLife cohort.

Hamelink I, van Tuinen M, Kwee TC, van Ooijen PMA, Vliegenthart R

pubmed logopapersJul 1 2025
To evaluate the repeatability of AI-based automatic measurement of vertebral and cardiovascular markers on low-dose chest CT. We included participants of the population-based Imaging in Lifelines (ImaLife) study with low-dose chest CT at baseline and 3-4 month follow-up. An AI system (AI-Rad Companion chest CT prototype) performed automatic segmentation and quantification of vertebral height and density, aortic diameters, heart volume (cardiac chambers plus pericardial fat), and coronary artery calcium volume (CACV). A trained researcher visually checked segmentation accuracy. We evaluated the repeatability of adequate AI-based measurements at baseline and repeat scan using Intraclass Correlation Coefficient (ICC), relative differences, and change in CACV risk categorization, assuming no physiological change. Overall, 632 participants (63 ± 11 years; 56.6% men) underwent short-term repeat CT (mean interval, 3.9 ± 1.8 months). Visual assessment showed adequate segmentation in both baseline and repeat scan for 98.7% of vertebral measurements, 80.1-99.4% of aortic measurements (except for the sinotubular junction (65.2%)), and 86.0% of CACV. For heart volume, 53.5% of segmentations were adequate at baseline and repeat scans. ICC for adequately segmented cases showed excellent agreement for all biomarkers (ICC > 0.9). Relative difference between baseline and repeat measurements was < 4% for vertebral and aortic measurements, 7.5% for heart volume, and 28.5% for CACV. There was high concordance in CACV risk categorization (81.2%). In low-dose chest CT, segmentation accuracy of AI-based software was high for vertebral, aortic, and CACV evaluation and relatively low for heart volume. There was excellent repeatability of vertebral and aortic measurements and high concordance in overall CACV risk categorization. Question Can AI algorithms for opportunistic screening in chest CT obtain an accurate and repeatable result when applied to multiple CT scans of the same participant? Findings Vertebral and aortic analysis showed accurate segmentation and excellent repeatability; coronary calcium segmentation was generally accurate but showed modest repeatability due to a non-electrocardiogram-triggered protocol. Clinical relevance Opportunistic screening for diseases outside the primary purpose of the CT scan is time-consuming. AI allows automated vertebral, aortic, and coronary artery calcium (CAC) assessment, with highly repeatable outcomes of vertebral and aortic biomarkers and high concordance in overall CAC categorization.

Radiomics for lung cancer diagnosis, management, and future prospects.

Boubnovski Martell M, Linton-Reid K, Chen M, Aboagye EO

pubmed logopapersJul 1 2025
Lung cancer remains the leading cause of cancer-related mortality worldwide, with its early detection and effective treatment posing significant clinical challenges. Radiomics, the extraction of quantitative features from medical imaging, has emerged as a promising approach for enhancing diagnostic accuracy, predicting treatment responses, and personalising patient care. This review explores the role of radiomics in lung cancer diagnosis and management, with methods ranging from handcrafted radiomics to deep learning techniques that can capture biological intricacies. The key applications are highlighted across various stages of lung cancer care, including nodule detection, histology prediction, and disease staging, where artificial intelligence (AI) models demonstrate superior specificity and sensitivity. The article also examines future directions, emphasising the integration of large language models, explainable AI (XAI), and super-resolution imaging techniques as transformative developments. By merging diverse data sources and incorporating interpretability into AI models, radiomics stands poised to redefine clinical workflows, offering more robust and reliable tools for lung cancer diagnosis, treatment planning, and outcome prediction. These advancements underscore radiomics' potential in supporting precision oncology and improving patient outcomes through data-driven insights.

CAD-Unet: A capsule network-enhanced Unet architecture for accurate segmentation of COVID-19 lung infections from CT images.

Dang Y, Ma W, Luo X, Wang H

pubmed logopapersJul 1 2025
Since the outbreak of the COVID-19 pandemic in 2019, medical imaging has emerged as a primary modality for diagnosing COVID-19 pneumonia. In clinical settings, the segmentation of lung infections from computed tomography images enables rapid and accurate quantification and diagnosis of COVID-19. Segmentation of COVID-19 infections in the lungs poses a formidable challenge, primarily due to the indistinct boundaries and limited contrast presented by ground glass opacity manifestations. Moreover, the confounding similarity among infiltrates, lung tissues, and lung walls further complicates this segmentation task. To address these challenges, this paper introduces a novel deep network architecture, called CAD-Unet, for segmenting COVID-19 lung infections. In this architecture, capsule networks are incorporated into the existing Unet framework. Capsule networks represent a novel type of network architecture that differs from traditional convolutional neural networks. They utilize vectors for information transfer among capsules, facilitating the extraction of intricate lesion spatial information. Additionally, we design a capsule encoder path and establish a coupling path between the unet encoder and the capsule encoder. This design maximizes the complementary advantages of both network structures while achieving efficient information fusion. Finally, extensive experiments are conducted on four publicly available datasets, encompassing binary segmentation tasks and multi-class segmentation tasks. The experimental results demonstrate the superior segmentation performance of the proposed model. The code has been released at: https://github.com/AmanoTooko-jie/CAD-Unet.

Multi-label pathology editing of chest X-rays with a Controlled Diffusion Model.

Chu H, Qi X, Wang H, Liang Y

pubmed logopapersJul 1 2025
Large-scale generative models have garnered significant attention in the field of medical imaging, particularly for image editing utilizing diffusion models. However, current research has predominantly concentrated on pathological editing involving single or a limited number of labels, making it challenging to achieve precise modifications. Inaccurate alterations may lead to substantial discrepancies between the generated and original images, thereby impacting the clinical applicability of these models. This paper presents a diffusion model with untangling capabilities applied to chest X-ray image editing, incorporating a mask-based mechanism for bone and organ information. We successfully perform multi-label pathological editing of chest X-ray images without compromising the integrity of the original thoracic structure. The proposed technology comprises a chest X-ray image classifier and an intricate organ mask; the classifier supplies essential feature labels that require untangling for the stabilized diffusion model, while the complex organ mask facilitates directed and controllable edits to chest X-rays. We assessed the outcomes of our proposed algorithm, named Chest X-rays_Mpe, using MS-SSIM and CLIP scores alongside qualitative evaluations conducted by radiology experts. The results indicate that our approach surpasses existing algorithms across both quantitative and qualitative metrics.

Prediction of PD-L1 expression in NSCLC patients using PET/CT radiomics and prognostic modelling for immunotherapy in PD-L1-positive NSCLC patients.

Peng M, Wang M, Yang X, Wang Y, Xie L, An W, Ge F, Yang C, Wang K

pubmed logopapersJul 1 2025
To develop a positron emission tomography/computed tomography (PET/CT)-based radiomics model for predicting programmed cell death ligand 1 (PD-L1) expression in non-small cell lung cancer (NSCLC) patients and estimating progression-free survival (PFS) and overall survival (OS) in PD-L1-positive patients undergoing first-line immunotherapy. We retrospectively analysed 143 NSCLC patients who underwent pretreatment <sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) PET/CT scans, of whom 86 were PD-L1-positive. Clinical data collected included gender, age, smoking history, Tumor-Node-Metastases (TNM) staging system, pathologic types, laboratory parameters, and PET metabolic parameters. Four machine learning algorithms-Bayes, logistic, random forest, and Supportsupport vector machine (SVM)-were used to build models. The predictive performance was validated using receiver operating characteristic (ROC) curves. Univariate and multivariate Cox analyses identified independent predictors of OS and PFS in PD-L1-positive expression patients undergoing immunotherapy, and a nomogram was created to predict OS. A total of 20 models were built for predicting PD-L1 expression. The clinical combined PET/CT radiomics model based on the SVM algorithm performed best (area under curve for training and test sets: 0.914 and 0.877, respectively). The Cox analyses showed that smoking history independently predicted PFS. SUVmean, monocyte percentage and white blood cell count were independent predictors of OS, and the nomogram was created to predict 1-year, 2-year, and 3-year OS based on these three factors. We developed PET/CT-based machine learning models to help predict PD-L1 expression in NSCLC patients and identified independent predictors of PFS and OS in PD-L1-positive patients receiving immunotherapy, thereby aiding precision treatment.

Diagnostic tools in respiratory medicine (Review).

Georgakopoulou VE, Spandidos DA, Corlateanu A

pubmed logopapersJul 1 2025
Recent advancements in diagnostic technologies have significantly transformed the landscape of respiratory medicine, aiming for early detection, improved specificity and personalized therapeutic strategies. Innovations in imaging such as multi-slice computed tomography (CT) scanners, high-resolution CT and magnetic resonance imaging (MRI) have revolutionized our ability to visualize and assess the structural and functional aspects of the respiratory system. These techniques are complemented by breakthroughs in molecular biology that have identified specific biomarkers and genetic determinants of respiratory diseases, enabling targeted diagnostic approaches. Additionally, functional tests including spirometry and exercise testing continue to provide valuable insights into pulmonary function and capacity. The integration of artificial intelligence is poised to further refine these diagnostic tools, enhancing their accuracy and efficiency. The present narrative review explores these developments and their impact on the management and outcomes of respiratory conditions, underscoring the ongoing shift towards more precise and less invasive diagnostic modalities in respiratory medicine.

Machine-Learning-Based Computed Tomography Radiomics Regression Model for Predicting Pulmonary Function.

Wang W, Sun Y, Wu R, Jin L, Shi Z, Tuersun B, Yang S, Li M

pubmed logopapersJul 1 2025
Chest computed tomography (CT) radiomics can be utilized for categorical predictions; however, models predicting pulmonary function indices directly are lacking. This study aimed to develop machine-learning-based regression models to predict pulmonary function using chest CT radiomics. This retrospective study enrolled patients who underwent chest CT and pulmonary function tests between January 2018 and April 2024. Machine-learning regression models were constructed and validated to predict pulmonary function indices, including forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV<sub>1</sub>). The models incorporated radiomics of the whole lung and clinical features. Model performance was evaluated using mean absolute error, mean squared error, root mean squared error, concordance correlation coefficient (CCC), and R-squared (R<sup>2</sup>) value and compared to spirometry results. Individual explanations of the models' decisions were analyzed using an explainable approach based on SHapley Additive exPlanations. In total, 1585 cases were included in the analysis, with 102 of them being external cases. Across the training, validation, test, and external test sets, the combined model consistently achieved the best performance in the regression task for predicting FVC (e.g. external test set: CCC, 0.745 [95% confidence interval 0.642-0.818]; R<sup>2</sup>, 0.601 [0.453-0.707]) and FEV<sub>1</sub> (e.g. external test set: CCC, 0.744 [0.633-0.824]; R<sup>2</sup>, 0.527 [0.298-0.675]). Age, sex, and emphysema were important factors for both FVC and FEV<sub>1</sub>, while distinct radiomics features contributed to each. Whole-lung-based radiomics features can be used to construct regression models to improve pulmonary function prediction.

A lung structure and function information-guided residual diffusion model for predicting idiopathic pulmonary fibrosis progression.

Jiang C, Xing X, Nan Y, Fang Y, Zhang S, Walsh S, Yang G, Shen D

pubmed logopapersJul 1 2025
Idiopathic Pulmonary Fibrosis (IPF) is a progressive lung disease that continuously scars and thickens lung tissue, leading to respiratory difficulties. Timely assessment of IPF progression is essential for developing treatment plans and improving patient survival rates. However, current clinical standards require multiple (usually two) CT scans at certain intervals to assess disease progression. This presents a dilemma: the disease progression is identified only after the disease has already progressed. To address this issue, a feasible solution is to generate the follow-up CT image from the patient's initial CT image to achieve early prediction of IPF. To this end, we propose a lung structure and function information-guided residual diffusion model. The key components of our model include (1) using a 2.5D generation strategy to reduce computational cost of generating 3D images with the diffusion model; (2) designing structural attention to mitigate negative impact of spatial misalignment between the two CT images on generation performance; (3) employing residual diffusion to accelerate model training and inference while focusing more on differences between the two CT images (i.e., the lesion areas); and (4) developing a CLIP-based text extraction module to extract lung function test information and further using such extracted information to guide the generation. Extensive experiments demonstrate that our method can effectively predict IPF progression and achieve superior generation performance compared to state-of-the-art methods.

A comparison of an integrated and image-only deep learning model for predicting the disappearance of indeterminate pulmonary nodules.

Wang J, Cai J, Tang W, Dudurych I, van Tuinen M, Vliegenthart R, van Ooijen P

pubmed logopapersJul 1 2025
Indeterminate pulmonary nodules (IPNs) require follow-up CT to assess potential growth; however, benign nodules may disappear. Accurately predicting whether IPNs will resolve is a challenge for radiologists. Therefore, we aim to utilize deep-learning (DL) methods to predict the disappearance of IPNs. This retrospective study utilized data from the Dutch-Belgian Randomized Lung Cancer Screening Trial (NELSON) and Imaging in Lifelines (ImaLife) cohort. Participants underwent follow-up CT to determine the evolution of baseline IPNs. The NELSON data was used for model training. External validation was performed in ImaLife. We developed integrated DL-based models that incorporated CT images and demographic data (age, sex, smoking status, and pack years). We compared the performance of integrated methods with those limited to CT images only and calculated sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). From a clinical perspective, ensuring high specificity is critical, as it minimizes false predictions of non-resolving nodules that should be monitored for evolution on follow-up CTs. Feature importance was calculated using SHapley Additive exPlanations (SHAP) values. The training dataset included 840 IPNs (134 resolving) in 672 participants. The external validation dataset included 111 IPNs (46 resolving) in 65 participants. On the external validation set, the performance of the integrated model (sensitivity, 0.50; 95 % CI, 0.35-0.65; specificity, 0.91; 95 % CI, 0.80-0.96; AUC, 0.82; 95 % CI, 0.74-0.90) was comparable to that solely trained on CT image (sensitivity, 0.41; 95 % CI, 0.27-0.57; specificity, 0.89; 95 % CI, 0.78-0.95; AUC, 0.78; 95 % CI, 0.69-0.86; P = 0.39). The top 10 most important features were all image related. Deep learning-based models can predict the disappearance of IPNs with high specificity. Integrated models using CT scans and clinical data had comparable performance to those using only CT images.
Page 15 of 42416 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.