Sort by:
Page 15 of 99990 results

Enabling micro-assessments of skills in the simulated setting using temporal artificial intelligence-models.

Bang Andersen I, Søndergaard Svendsen MB, Risgaard AL, Sander Danstrup C, Todsen T, Tolsgaard MG, Friis ML

pubmed logopapersSep 7 2025
Assessing skills in simulated settings is resource-intensive and lacks validated metrics. Advances in AI offer the potential for automated competence assessment, addressing these limitations. This study aimed to develop and validate a machine learning AI model for automated evaluation during simulation-based thyroid ultrasound (US) training. Videos from eight experts and 21 novices performing thyroid US on a simulator were analyzed. Frames were processed into sequences of 1, 10, and 50 seconds. A convolutional neural network with a pre-trained ResNet-50 base and a long short-term memory layer analyzed these sequences. The model was trained to distinguish competence levels (competent=1, not competent=0) using fourfold cross-validation, with performance metrics including precision, recall, F1 score, and accuracy. Bayesian updating and adaptive thresholding assessed performance over time. The AI model effectively differentiated expert and novice US performance. The 50-second sequences achieved the highest accuracy (70%) and F1 score (0.76). Experts showed significantly longer durations above the threshold (15.71s) compared to novices (9.31s, p= .030). A long short-term memory-based AI model provides near real-time, automated assessments of competence in US training. Utilizing temporal video data enables detailed micro-assessments of complex procedures, which may enhance interpretability and be applied across various procedural domains.

Early postnatal characteristics and differential diagnosis of choledochal cyst and cystic biliary atresia.

Tian Y, Chen S, Ji C, Wang XP, Ye M, Chen XY, Luo JF, Li X, Li L

pubmed logopapersSep 7 2025
Choledochal cysts (CC) and cystic biliary atresia (CBA) present similarly in early infancy but require different treatment approaches. While CC surgery can be delayed until 3-6 months of age in asymptomatic patients, CBA requires intervention within 60 days to prevent cirrhosis. To develop a diagnostic model for early differentiation between these conditions. A total of 319 patients with hepatic hilar cysts (< 60 days old at surgery) were retrospectively analyzed; these patients were treated at three hospitals between 2011 and 2022. Clinical features including biochemical markers and ultrasonographic measurements were compared between CC (<i>n</i> = 274) and CBA (<i>n</i> = 45) groups. Least absolute shrinkage and selection operator regression identified key diagnostic features, and 11 machine learning models were developed and compared. The CBA group showed higher levels of total bile acid, total bilirubin, γ-glutamyl transferase, aspartate aminotransferase, and alanine aminotransferase, and direct bilirubin, while longitudinal diameter of the cysts and transverse diameter of the cysts were larger in the CC group. The multilayer perceptron model demonstrated optimal performance with 95.8% accuracy, 92.9% sensitivity, 96.3% specificity, and an area under the curve of 0.990. Decision curve analysis confirmed its clinical utility. Based on the model, we developed user-friendly diagnostic software for clinical implementation. Our machine learning approach differentiates CC from CBA in early infancy using routinely available clinical parameters. Early accurate diagnosis facilitates timely surgical intervention for CBA cases, potentially improving patient outcomes.

Predicting Efficacy of Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer Using Transrectal Contrast-Enhanced Ultrasound-Based Radiomics Model.

Liao Z, Yang Y, Luo Y, Yin H, Jing J, Zhuang H

pubmed logopapersSep 5 2025
Predicting tumor regression grade (TRG) after neoadjuvant chemoradiotherapy (NCRT) in patients with locally advanced rectal cancer (LARC) preoperatively accurately is crucial for providing individualized treatment plans. This study aims to develop transrectal contrast-enhanced ultrasound-based (TR-CEUS) radiomics models for predicting TRG. A total of 190 LARC patients undergoing NCRT and subsequent total mesorectal excision were categorized into good and poor response groups based on pathological TRG. TR-CEUS examinations were conducted before and after NCRT. Machine learning (ML) models for predicting TRG were developed by employing pre- and post-NCRT TR-CEUS image series, based on seven classifiers, including random forest (RF), multi-layer perceptron (MLP) and so on. The predictive performance of models was evaluated using receiver operating characteristic curve analysis and Delong test. A total of 1525 TR-CEUS images were included for analysis, and 3360 ML models were constructed using image series before and after NCRT, respectively. The optimal pre-NCRT ML model, constructed from imaging series before NCRT, was RF; whereas the optimal post-NCRT model, derived from imaging series after NCRT, was MLP. The areas under the curve for the optimal RF and MLP models demonstrated values of 0.609 and 0.857, respectively, in the cross-validation cohort, with corresponding values of 0.659 and 0.841 observed in the independent test cohort. Delong tests showed that the predictive efficacy of the post-NCRT model was statistically higher than that of the pre-NCRT model (p < 0.05). Radiomics model developed by TR-CEUS images after NCRT demonstrated high predictive performance for TRG, thereby facilitating precise evaluation of therapeutic response to NCRT in LARC patients.

VLSM-Ensemble: Ensembling CLIP-based Vision-Language Models for Enhanced Medical Image Segmentation

Julia Dietlmeier, Oluwabukola Grace Adegboro, Vayangi Ganepola, Claudia Mazo, Noel E. O'Connor

arxiv logopreprintSep 5 2025
Vision-language models and their adaptations to image segmentation tasks present enormous potential for producing highly accurate and interpretable results. However, implementations based on CLIP and BiomedCLIP are still lagging behind more sophisticated architectures such as CRIS. In this work, instead of focusing on text prompt engineering as is the norm, we attempt to narrow this gap by showing how to ensemble vision-language segmentation models (VLSMs) with a low-complexity CNN. By doing so, we achieve a significant Dice score improvement of 6.3% on the BKAI polyp dataset using the ensembled BiomedCLIPSeg, while other datasets exhibit gains ranging from 1% to 6%. Furthermore, we provide initial results on additional four radiology and non-radiology datasets. We conclude that ensembling works differently across these datasets (from outperforming to underperforming the CRIS model), indicating a topic for future investigation by the community. The code is available at https://github.com/juliadietlmeier/VLSM-Ensemble.

Preoperative Assessment of Extraprostatic Extension in Prostate Cancer Using an Interpretable Tabular Prior-Data Fitted Network-Based Radiomics Model From MRI.

Liu BC, Ding XH, Xu HH, Bai X, Zhang XJ, Cui MQ, Guo AT, Mu XT, Xie LZ, Kang HH, Zhou SP, Zhao J, Wang BJ, Wang HY

pubmed logopapersSep 5 2025
MRI assessment for extraprostatic extension (EPE) of prostate cancer (PCa) is challenging due to limited accuracy and interobserver agreement. To develop an interpretable Tabular Prior-data Fitted Network (TabPFN)-based radiomics model to evaluate EPE using MRI and explore its integration with radiologists' assessments. Retrospective. Five hundred and thirteen consecutive patients who underwent radical prostatectomy. Four hundred and eleven patients from center 1 (mean age 67 ± 7 years) formed training (287 patients) and internal test (124 patients) sets, and 102 patients from center 2 (mean age 66 ± 6 years) were assigned as an external test set. Three Tesla, fast spin echo T2-weighted imaging (T2WI) and diffusion-weighted imaging using single-shot echo planar imaging. Radiomics features were extracted from T2WI and apparent diffusion coefficient maps, and the TabRadiomics model was developed using TabPFN. Three machine learning models served as baseline comparisons: support vector machine, random forest, and categorical boosting. Two radiologists (with > 1500 and > 500 prostate MRI interpretations, respectively) independently evaluated EPE grade on MRI. Artificial intelligence (AI)-modified EPE grading algorithms incorporating the TabRadiomics model with radiologists' interpretations of curvilinear contact length and frank EPE were simulated. Receiver operating characteristic curve (AUC), Delong test, and McNemar test. p < 0.05 was considered significant. The TabRadiomics model performed comparably to machine learning models in both internal and external tests, with AUCs of 0.806 (95% CI, 0.727-0.884) and 0.842 (95% CI, 0.770-0.912), respectively. AI-modified algorithms showed significantly higher accuracies compared with the less experienced reader in internal testing, with up to 34.7% of interpretations requiring no radiologist input. However, no difference was observed in both readers in the external test set. The TabRadiomics model demonstrated high performance in EPE assessment and may improve clinical assessment in PCa. 4. Stage 2.

AI-driven and Traditional Radiomic Model for Predicting Muscle Invasion in Bladder Cancer via Multi-parametric Imaging: A Systematic Review and Meta-analysis.

Wang Z, Shi H, Wang Q, Huang Y, Feng M, Yu L, Dong B, Li J, Deng X, Fu S, Zhang G, Wang H

pubmed logopapersSep 5 2025
This study systematically evaluates the diagnostic performance of artificial intelligence (AI)-driven and conventional radiomics models in detecting muscle-invasive bladder cancer (MIBC) through meta-analytical approaches. Furthermore, it investigates their potential synergistic value with the Vesical Imaging-Reporting and Data System (VI-RADS) and assesses clinical translation prospects. This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We conducted a comprehensive systematic search of PubMed, Web of Science, Embase, and Cochrane Library databases up to May 13, 2025, and manually screened the references of included studies. The quality and risk of bias of the selected studies were assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) and Radiomics Quality Score (RQS) tools. We pooled the area under the curve (AUC), sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and their 95% confidence intervals (95% CI). Additionally, meta-regression and subgroup analyses were performed to identify potential sources of heterogeneity. This meta-analysis incorporated 43 studies comprising 9624 patients. The majority of included studies demonstrated low risk of bias, with a mean RQS of 18.89. Pooled analysis yielded an AUC of 0.92 (95% CI: 0.89-0.94). The aggregate sensitivity and specificity were both 0.86 (95% CI: 0.84-0.87), with heterogeneity indices of I² = 43.58 and I² = 72.76, respectively. The PLR was 5.97 (95% CI: 5.28-6.75, I² = 64.04), while the NLR was 0.17 (95% CI: 0.15-0.19, I² = 37.68). The DOR reached 35.57 (95% CI: 29.76-42.51, I² = 99.92). Notably, all included studies exhibited significant heterogeneity (P < 0.1). Meta-regression and subgroup analyses identified several significant sources of heterogeneity, including: study center type (single-center vs. multi-center), sample size (<100 vs. ≥100 patients), dataset classification (training, validation, testing, or ungrouped), imaging modality (computed tomography [CT] vs. magnetic resonance imaging [MRI]), modeling algorithm (deep learning vs. machine learning vs. other), validation methodology (cross-validation vs. cohort validation), segmentation method (manual vs. [semi]automated), regional differences (China vs. other countries), and risk of bias (high vs. low vs. unclear). AI-driven and traditional radiomic models have exhibited robust diagnostic performance for MIBC. Nevertheless, substantial heterogeneity across studies necessitates validation through multinational, multicenter prospective cohort studies to establish external validity.

Accelerated Patient-specific Non-Cartesian MRI Reconstruction using Implicit Neural Representations.

Xu D, Liu H, Miao X, O'Connor D, Scholey JE, Yang W, Feng M, Ohliger M, Lin H, Ruan D, Yang Y, Sheng K

pubmed logopapersSep 5 2025
Accelerating MR acquisition is essential for image guided therapeutic applications. Compressed sensing (CS) has been developed to minimize image artifacts in accelerated scans, but the required iterative reconstruction is computationally complex and difficult to generalize. Convolutional neural networks (CNNs)/Transformers-based deep learning (DL) methods emerged as a faster alternative but face challenges in modeling continuous k-space, a problem amplified with non-Cartesian sampling commonly used in accelerated acquisition. In comparison, implicit neural representations can model continuous signals in the frequency domain and thus are compatible with arbitrary k-space sampling patterns. The current study develops a novel generative-adversarially trained implicit neural representations (k-GINR) for de novo undersampled non-Cartesian k-space reconstruction. k-GINR consists of two stages: 1) supervised training on an existing patient cohort; 2) self-supervised patient-specific optimization. The StarVIBE T1-weighted liver dataset consisting of 118 prospectively acquired scans and corresponding coil data were employed for testing. k-GINR is compared with two INR based methods, NeRP and k-NeRP, an unrolled DL method, Deep Cascade CNN, and CS. k-GINR consistently outperformed the baselines with a larger performance advantage observed at very high accelerations (PSNR: 6.8%-15.2% higher at 3 times, 15.1%-48.8% at 10 times, and 29.3%-60.5% higher at 20 times). The reconstruction times for k-GINR, NeRP, k-NeRP, CS, and Deep Cascade CNN were approximately 3 minutes, 4-10 minutes, 3 minutes, 4 minutes and 3 second, respectively. k-GINR, an innovative two-stage INR network incorporating adversarial training, was designed for direct non-Cartesian k-space reconstruction for new incoming patients. It demonstrated superior image quality compared to CS and Deep Cascade CNN across a wide range of acceleration ratios.

Implementation of Fully Automated AI-Integrated System for Body Composition Assessment on Computed Tomography for Opportunistic Sarcopenia Screening: Multicenter Prospective Study.

Urooj B, Ko Y, Na S, Kim IO, Lee EH, Cho S, Jeong H, Khang S, Lee J, Kim KW

pubmed logopapersSep 5 2025
Opportunistic computed tomography (CT) screening for the evaluation of sarcopenia and myosteatosis has been gaining emphasis. A fully automated artificial intelligence (AI)-integrated system for body composition assessment on CT scans is a prerequisite for effective opportunistic screening. However, no study has evaluated the implementation of fully automated AI systems for opportunistic screening in real-world clinical practice for routine health check-ups. The aim of this study is to evaluate the performance and clinical utility of a fully automated AI-integrated system for body composition assessment on opportunistic CT during routine health check-ups. This prospective multicenter study included 537 patients who underwent routine health check-ups across 3 institutions. Our AI algorithm models are composed of selecting L3 slice and segmenting muscle and fat area in an end-to-end manner. The AI models were integrated into the Picture Archiving and Communication System (PACS) at each institution. Technical success rate, processing time, and segmentation accuracy in Dice similarity coefficient were assessed. Body composition metrics were analyzed across age and sex groups. The fully automated AI-integrated system successfully retrieved anonymized CT images from the PACS, performed L3 selection and segmentation, and provided body composition metrics, including muscle quality maps and muscle age. The technical success rate was 100% without any failed cases requiring manual adjustment. The mean processing time from CT acquisition to report generation was 4.12 seconds. Segmentation accuracy comparing AI results and human expert results was 97.4%. Significant age-related declines in skeletal muscle area and normal-attenuation muscle area were observed, alongside increases in low-attenuation muscle area and intramuscular adipose tissue. Implementation of the fully automated AI-integrated system significantly enhanced opportunistic sarcopenia screening, achieving excellent technical success and high segmentation accuracy without manual intervention. This system has the potential to transform routine health check-ups by providing rapid and accurate assessments of body composition.

Prostate MR image segmentation using a multi-stage network approach.

Jacobson LEO, Bader-El-Den M, Maurya L, Hopgood AA, Tamma V, Masum SK, Prendergast DJ, Osborn P

pubmed logopapersSep 5 2025
Prostate cancer (PCa) remains one of the most prevalent cancers among men, with over 1.4 million new cases and 375,304 deaths reported globally in 2020. Current diagnostic approaches, such as prostate-specific antigen (PSA) testing and trans-rectal ultrasound (TRUS)-guided biopsies, are often Limited by low specificity and accuracy. This study addresses these Limitations by leveraging deep learning-based image segmentation techniques on a dataset comprising 61,119 T2-weighted MR images from 1151 patients to enhance PCa detection and characterisation. A multi-stage segmentation approach, including one-stage, sequential two-stage, and end-to-end two-stage methods, was evaluated using various deep learning architectures. The MultiResUNet model, integrated into a multi-stage segmentation framework, demonstrated significant improvements in delineating prostate boundaries. The study utilised a dataset of over 61,000 T2-weighted magnetic resonance (MR) images from more than 1100 patients, employing three distinct segmentation strategies: one-stage, sequential two-stage, and end-to-end two-stage methods. The end-to-end approach, leveraging shared feature representations, consistently outperformed other methods, underscoring its effectiveness in enhancing diagnostic accuracy. These findings highlight the potential of advanced deep learning architectures in streamlining prostate cancer detection and treatment planning. Future work will focus on further optimisation of the models and assessing their generalisability to diverse medical imaging contexts.

Deep Learning Based Multiomics Model for Risk Stratification of Postoperative Distant Metastasis in Colorectal Cancer.

Yao X, Han X, Huang D, Zheng Y, Deng S, Ning X, Yuan L, Ao W

pubmed logopapersSep 4 2025
To develop deep learning-based multiomics models for predicting postoperative distant metastasis (DM) and evaluating survival prognosis in colorectal cancer (CRC) patients. This retrospective study included 521 CRC patients who underwent curative surgery at two centers. Preoperative CT and postoperative hematoxylin-eosin (HE) stained slides were collected. A total of 381 patients from Center 1 were split (7:3) into training and internal validation sets; 140 patients from Center 2 formed the independent external validation set. Patients were grouped based on DM status during follow-up. Radiological and pathological models were constructed using independent imaging and pathological predictors. Deep features were extracted with a ResNet-101 backbone to build deep learning radiomics (DLRS) and deep learning pathomics (DLPS) models. Two integrated models were developed: Nomogram 1 (radiological + DLRS) and Nomogram 2 (pathological + DLPS). CT- reported T (cT) stage (OR=2.00, P=0.006) and CT-reported N (cN) stage (OR=1.63, P=0.023) were identified as independent radiologic predictors for building the radiological model; pN stage (OR=1.91, P=0.003) and perineural invasion (OR=2.07, P=0.030) were identified as pathological predictors for building the pathological model. DLRS and DLPS incorporated 28 and 30 deep features, respectively. In the training set, area under the curve (AUC) for radiological, pathological, DLRS, DLPS, Nomogram 1, and Nomogram 2 models were 0.657, 0.687, 0.931, 0.914, 0.938, and 0.930. DeLong's test showed DLRS, DLPS, and both nomograms significantly outperformed conventional models (P<.05). Kaplan-Meier analysis confirmed effective 3-year disease-free survival (DFS) stratification by the nomograms. Deep learning-based multiomics models provided high accuracy for postoperative DM prediction. Nomogram models enabled reliable DFS risk stratification in CRC patients.
Page 15 of 99990 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.