Sort by:
Page 145 of 1521519 results

Deep Learning for Automated Prediction of Sphenoid Sinus Pneumatization in Computed Tomography.

Alamer A, Salim O, Alharbi F, Alsaleem F, Almuqbil A, Alhassoon K, Alsunaydih F

pubmed logopapersMay 22 2025
The sphenoid sinus is an important access point for trans-sphenoidal surgeries, but variations in its pneumatization may complicate surgical safety. Deep learning can be used to identify these anatomical variations. We developed a convolutional neural network (CNN) model for the automated prediction of sphenoid sinus pneumatization patterns in computed tomography (CT) scans. This model was tested on mid-sagittal CT images. Two radiologists labeled all CT images into four pneumatization patterns: Conchal (type I), presellar (type II), sellar (type III), and postsellar (type IV). We then augmented the training set to address the limited size and imbalanced nature of the data. The initial dataset included 249 CT images, divided into training (n = 174) and test (n = 75) datasets. The training dataset was augmented to 378 images. Following augmentation, the overall diagnostic accuracy of the model improved from 76.71% to 84%, with an area under the curve (AUC) of 0.84, indicating very good diagnostic performance. Subgroup analysis showed excellent results for type IV, with the highest AUC of 0.93, perfect sensitivity (100%), and an F1-score of 0.94. The model also performed robustly for type I, achieving an accuracy of 97.33% and high specificity (99%). These metrics highlight the model's potential for reliable clinical application. The proposed CNN model demonstrates very good diagnostic accuracy in identifying various sphenoid sinus pneumatization patterns, particularly excelling in type IV, which is crucial for endoscopic sinus surgery due to its higher risk of surgical complications. By assisting radiologists and surgeons, this model enhances the safety of transsphenoidal surgery, highlighting its value, novelty, and applicability in clinical settings.

Render-FM: A Foundation Model for Real-time Photorealistic Volumetric Rendering

Zhongpai Gao, Meng Zheng, Benjamin Planche, Anwesa Choudhuri, Terrence Chen, Ziyan Wu

arxiv logopreprintMay 22 2025
Volumetric rendering of Computed Tomography (CT) scans is crucial for visualizing complex 3D anatomical structures in medical imaging. Current high-fidelity approaches, especially neural rendering techniques, require time-consuming per-scene optimization, limiting clinical applicability due to computational demands and poor generalizability. We propose Render-FM, a novel foundation model for direct, real-time volumetric rendering of CT scans. Render-FM employs an encoder-decoder architecture that directly regresses 6D Gaussian Splatting (6DGS) parameters from CT volumes, eliminating per-scan optimization through large-scale pre-training on diverse medical data. By integrating robust feature extraction with the expressive power of 6DGS, our approach efficiently generates high-quality, real-time interactive 3D visualizations across diverse clinical CT data. Experiments demonstrate that Render-FM achieves visual fidelity comparable or superior to specialized per-scan methods while drastically reducing preparation time from nearly an hour to seconds for a single inference step. This advancement enables seamless integration into real-time surgical planning and diagnostic workflows. The project page is: https://gaozhongpai.github.io/renderfm/.

A Deep Learning Vision-Language Model for Diagnosing Pediatric Dental Diseases

Pham, T.

medrxiv logopreprintMay 22 2025
This study proposes a deep learning vision-language model for the automated diagnosis of pediatric dental diseases, with a focus on differentiating between caries and periapical infections. The model integrates visual features extracted from panoramic radiographs using methods of non-linear dynamics and textural encoding with textual descriptions generated by a large language model. These multimodal features are concatenated and used to train a 1D-CNN classifier. Experimental results demonstrate that the proposed model outperforms conventional convolutional neural networks and standalone language-based approaches, achieving high accuracy (90%), sensitivity (92%), precision (92%), and an AUC of 0.96. This work highlights the value of combining structured visual and textual representations in improving diagnostic accuracy and interpretability in dental radiology. The approach offers a promising direction for the development of context-aware, AI-assisted diagnostic tools in pediatric dental care.

Customized GPT-4V(ision) for radiographic diagnosis: can large language model detect supernumerary teeth?

Aşar EM, İpek İ, Bi Lge K

pubmed logopapersMay 21 2025
With the growing capabilities of language models like ChatGPT to process text and images, this study evaluated their accuracy in detecting supernumerary teeth on periapical radiographs. A customized GPT-4V model (CGPT-4V) was also developed to assess whether domain-specific training could improve diagnostic performance compared to standard GPT-4V and GPT-4o models. One hundred eighty periapical radiographs (90 with and 90 without supernumerary teeth) were evaluated using GPT-4 V, GPT-4o, and a fine-tuned CGPT-4V model. Each image was assessed separately with the standardized prompt "Are there any supernumerary teeth in the radiograph above?" to avoid contextual bias. Three dental experts scored the responses using a three-point Likert scale for positive cases and a binary scale for negatives. Chi-square tests and ROC analysis were used to compare model performances (p < 0.05). Among the three models, CGPT-4 V exhibited the highest accuracy, detecting supernumerary teeth correctly in 91% of cases, compared to 77% for GPT-4o and 63% for GPT-4V. The CGPT-4V model also demonstrated a significantly lower false positive rate (16%) than GPT-4V (42%). A statistically significant difference was found between CGPT-4V and GPT-4o (p < 0.001), while no significant difference was observed between GPT-4V and CGPT-4V or between GPT-4V and GPT-4o. Additionally, CGPT-4V successfully identified multiple supernumerary teeth in radiographs where present. These findings highlight the diagnostic potential of customized GPT models in dental radiology. Future research should focus on multicenter validation, seamless clinical integration, and cost-effectiveness to support real-world implementation.

ÆMMamba: An Efficient Medical Segmentation Model With Edge Enhancement.

Dong X, Zhou B, Yin C, Liao IY, Jin Z, Xu Z, Pu B

pubmed logopapersMay 21 2025
Medical image segmentation is critical for disease diagnosis, treatment planning, and prognosis assessment, yet the complexity and diversity of medical images pose significant challenges to accurate segmentation. While Convolutional Neural Networks capture local features and Vision Transformers excel in the global context, both struggle with efficient long-range dependency modeling. Inspired by Mamba's State Space Modeling efficiency, we propose ÆMMamba, a novel multi-scale feature extraction framework built on the Mamba backbone network. AÆMMamba integrates several innovative modules: the Efficient Fusion Bridge (EFB) module, which employs a bidirectional state-space model and attention mechanisms to fuse multi-scale features; the Edge-Aware Module (EAM), which enhances low-level edge representation using Sobel-based edge extraction; and the Boundary Sensitive Decoder (BSD), which leverages inverse attention and residual convolutional layers to handle cross-level complex boundaries. ÆMMamba achieves state-of-the-art performance across 8 medical segmentation datasets. On polyp segmentation datasets (Kvasir, ClinicDB, ColonDB, EndoScene, ETIS), it records the highest mDice and mIoU scores, outperforming methods like MADGNet and Swin-UMamba, with a standout mDice of 72.22 on ETIS, the most challenging dataset in this domain. For lung and breast segmentation, ÆMMamba surpasses competitors such as H2Former and SwinUnet, achieving Dice scores of 84.24 on BUSI and 79.83 on COVID-19 Lung. And on the LGG brain MRI dataset, ÆMMamba attains an mDice of 87.25 and an mIoU of 79.31, outperforming all compared methods. The source code will be released at https://github.com/xingbod/eMMamba.

Synthesizing [<sup>18</sup>F]PSMA-1007 PET bone images from CT images with GAN for early detection of prostate cancer bone metastases: a pilot validation study.

Chai L, Yao X, Yang X, Na R, Yan W, Jiang M, Zhu H, Sun C, Dai Z, Yang X

pubmed logopapersMay 21 2025
[<sup>18</sup>F]FDG PET/CT scan combined with [<sup>18</sup>F]PSMA-1007 PET/CT scan is commonly conducted for detecting bone metastases in prostate cancer (PCa). However, it is expensive and may expose patients to more radiation hazards. This study explores deep learning (DL) techniques to synthesize [<sup>18</sup>F]PSMA-1007 PET bone images from CT bone images for the early detection of bone metastases in PCa, which may reduce additional PET/CT scans and relieve the burden on patients. We retrospectively collected paired whole-body (WB) [<sup>18</sup>F]PSMA-1007 PET/CT images from 152 patients with clinical and pathological diagnosis results, including 123 PCa and 29 cases of benign lesions. The average age of the patients was 67.48 ± 10.87 years, and the average lesion size was 8.76 ± 15.5 mm. The paired low-dose CT and PET images were preprocessed and segmented to construct the WB bone structure images. 152 subjects were randomly stratified into training, validation, and test groups in the number of 92:41:19. Two generative adversarial network (GAN) models-Pix2pix and Cycle GAN-were trained to synthesize [<sup>18</sup>F]PSMA-1007 PET bone images from paired CT bone images. The performance of two synthesis models was evaluated using quantitative metrics of mean absolute error (MAE), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index metrics (SSIM), as well as the target-to-background ratio (TBR). The results of DL-based image synthesis indicated that the synthesis of [<sup>18</sup>F]PSMA-1007 PET bone images from low-dose CT bone images was highly feasible. The Pix2pix model performed better with an SSIM of 0.97, PSNR of 44.96, MSE of 0.80, and MAE of 0.10, respectively. The TBRs of bone metastasis lesions calculated on DL-synthesized PET bone images were highly correlated with those of real PET bone images (Pearson's r > 0.90) and had no significant differences (p < 0.05). It is feasible to generate synthetic [<sup>18</sup>F]PSMA-1007 PET bone images from CT bone images by using DL techniques with reasonable accuracy, which can provide information for early detection of PCa bone metastases.

Predictive machine learning and multimodal data to develop highly sensitive, composite biomarkers of disease progression in Friedreich ataxia.

Saha S, Corben LA, Selvadurai LP, Harding IH, Georgiou-Karistianis N

pubmed logopapersMay 21 2025
Friedreich ataxia (FRDA) is a rare, inherited progressive movement disorder for which there is currently no cure. The field urgently requires more sensitive, objective, and clinically relevant biomarkers to enhance the evaluation of treatment efficacy in clinical trials and to speed up the process of drug discovery. This study pioneers the development of clinically relevant, multidomain, fully objective composite biomarkers of disease severity and progression, using multimodal neuroimaging and background data (i.e., demographic, disease history, genetics). Data from 31 individuals with FRDA and 31 controls from a longitudinal multimodal natural history study IMAGE-FRDA, were included. Using an elasticnet predictive machine learning (ML) regression model, we derived a weighted combination of background, structural MRI, diffusion MRI, and quantitative susceptibility imaging (QSM) measures that predicted Friedreich ataxia rating scale (FARS) with high accuracy (R<sup>2</sup> = 0.79, root mean square error (RMSE) = 13.19). This composite also exhibited strong sensitivity to disease progression over two years (Cohen's d = 1.12), outperforming the sensitivity of the FARS score alone (d = 0.88). The approach was validated using the Scale for the assessment and rating of ataxia (SARA), demonstrating the potential and robustness of ML-derived composites to surpass individual biomarkers and act as complementary or surrogate markers of disease severity and progression. However, further validation, refinement, and the integration of additional data modalities will open up new opportunities for translating these biomarkers into clinical practice and clinical trials for FRDA, as well as other rare neurodegenerative diseases.

An automated deep learning framework for brain tumor classification using MRI imagery.

Aamir M, Rahman Z, Bhatti UA, Abro WA, Bhutto JA, He Z

pubmed logopapersMay 21 2025
The precise and timely diagnosis of brain tumors is essential for accelerating patient recovery and preserving lives. Brain tumors exhibit a variety of sizes, shapes, and visual characteristics, requiring individualized treatment strategies for each patient. Radiologists require considerable proficiency to manually detect brain malignancies. However, tumor recognition remains inefficient, imprecise, and labor-intensive in manual procedures, underscoring the need for automated methods. This study introduces an effective approach for identifying brain lesions in magnetic resonance imaging (MRI) images, minimizing dependence on manual intervention. The proposed method improves image clarity by combining guided filtering techniques with anisotropic Gaussian side windows (AGSW). A morphological analysis is conducted prior to segmentation to exclude non-tumor regions from the enhanced MRI images. Deep neural networks segment the images, extracting high-quality regions of interest (ROIs) and multiscale features. Identifying salient elements is essential and is accomplished through an attention module that isolates distinctive features while eliminating irrelevant information. An ensemble model is employed to classify brain tumors into different categories. The proposed technique achieves an overall accuracy of 99.94% and 99.67% on the publicly available brain tumor datasets BraTS2020 and Figshare, respectively. Furthermore, it surpasses existing technologies in terms of automation and robustness, thereby enhancing the entire diagnostic process.

Machine Learning Derived Blood Input for Dynamic PET Images of Rat Heart

Shubhrangshu Debsarkar, Bijoy Kundu

arxiv logopreprintMay 21 2025
Dynamic FDG PET imaging study of n = 52 rats including 26 control Wistar-Kyoto (WKY) rats and 26 experimental spontaneously hypertensive rats (SHR) were performed using a Siemens microPET and Albira trimodal scanner longitudinally at 1, 2, 3, 5, 9, 12 and 18 months of age. A 15-parameter dual output model correcting for spill over contamination and partial volume effects with peak fitting cost functions was developed for simultaneous estimation of model corrected blood input function (MCIF) and kinetic rate constants for dynamic FDG PET images of rat heart in vivo. Major drawbacks of this model are its dependence on manual annotations for the Image Derived Input Function (IDIF) and manual determination of crucial model parameters to compute MCIF. To overcome these limitations, we performed semi-automated segmentation and then formulated a Long-Short-Term Memory (LSTM) cell network to train and predict MCIF in test data using a concatenation of IDIFs and myocardial inputs and compared them with reference-modeled MCIF. Thresholding along 2D plane slices with two thresholds, with T1 representing high-intensity myocardium, and T2 representing lower-intensity rings, was used to segment the area of the LV blood pool. The resultant IDIF and myocardial TACs were used to compute the corresponding reference (model) MCIF for all data sets. The segmented IDIF and the myocardium formed the input for the LSTM network. A k-fold cross validation structure with a 33:8:11 split and 5 folds was utilized to create the model and evaluate the performance of the LSTM network for all datasets. To overcome the sparseness of data as time steps increase, midpoint interpolation was utilized to increase the density of datapoints beyond time = 10 minutes. The model utilizing midpoint interpolation was able to achieve a 56.4% improvement over previous Mean Squared Error (MSE).

Reconsider the Template Mesh in Deep Learning-based Mesh Reconstruction

Fengting Zhang, Boxu Liang, Qinghao Liu, Min Liu, Xiang Chen, Yaonan Wang

arxiv logopreprintMay 21 2025
Mesh reconstruction is a cornerstone process across various applications, including in-silico trials, digital twins, surgical planning, and navigation. Recent advancements in deep learning have notably enhanced mesh reconstruction speeds. Yet, traditional methods predominantly rely on deforming a standardised template mesh for individual subjects, which overlooks the unique anatomical variations between them, and may compromise the fidelity of the reconstructions. In this paper, we propose an adaptive-template-based mesh reconstruction network (ATMRN), which generates adaptive templates from the given images for the subsequent deformation, moving beyond the constraints of a singular, fixed template. Our approach, validated on cortical magnetic resonance (MR) images from the OASIS dataset, sets a new benchmark in voxel-to-cortex mesh reconstruction, achieving an average symmetric surface distance of 0.267mm across four cortical structures. Our proposed method is generic and can be easily transferred to other image modalities and anatomical structures.
Page 145 of 1521519 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.