Sort by:
Page 14 of 14137 results

A novel framework for esophageal cancer grading: combining CT imaging, radiomics, reproducibility, and deep learning insights.

Alsallal M, Ahmed HH, Kareem RA, Yadav A, Ganesan S, Shankhyan A, Gupta S, Joshi KK, Sameer HN, Yaseen A, Athab ZH, Adil M, Farhood B

pubmed logopapersMay 10 2025
This study aims to create a reliable framework for grading esophageal cancer. The framework combines feature extraction, deep learning with attention mechanisms, and radiomics to ensure accuracy, interpretability, and practical use in tumor analysis. This retrospective study used data from 2,560 esophageal cancer patients across multiple clinical centers, collected from 2018 to 2023. The dataset included CT scan images and clinical information, representing a variety of cancer grades and types. Standardized CT imaging protocols were followed, and experienced radiologists manually segmented the tumor regions. Only high-quality data were used in the study. A total of 215 radiomic features were extracted using the SERA platform. The study used two deep learning models-DenseNet121 and EfficientNet-B0-enhanced with attention mechanisms to improve accuracy. A combined classification approach used both radiomic and deep learning features, and machine learning models like Random Forest, XGBoost, and CatBoost were applied. These models were validated with strict training and testing procedures to ensure effective cancer grading. This study analyzed the reliability and performance of radiomic and deep learning features for grading esophageal cancer. Radiomic features were classified into four reliability levels based on their ICC (Intraclass Correlation) values. Most of the features had excellent (ICC > 0.90) or good (0.75 < ICC ≤ 0.90) reliability. Deep learning features extracted from DenseNet121 and EfficientNet-B0 were also categorized, and some of them showed poor reliability. The machine learning models, including XGBoost and CatBoost, were tested for their ability to grade cancer. XGBoost with Recursive Feature Elimination (RFE) gave the best results for radiomic features, with an AUC (Area Under the Curve) of 91.36%. For deep learning features, XGBoost with Principal Component Analysis (PCA) gave the best results using DenseNet121, while CatBoost with RFE performed best with EfficientNet-B0, achieving an AUC of 94.20%. Combining radiomic and deep features led to significant improvements, with XGBoost achieving the highest AUC of 96.70%, accuracy of 96.71%, and sensitivity of 95.44%. The combination of both DenseNet121 and EfficientNet-B0 models in ensemble models achieved the best overall performance, with an AUC of 95.14% and accuracy of 94.88%. This study improves esophageal cancer grading by combining radiomics and deep learning. It enhances diagnostic accuracy, reproducibility, and interpretability, while also helping in personalized treatment planning through better tumor characterization. Not applicable.

Systematic review and epistemic meta-analysis to advance binomial AI-radiomics integration for predicting high-grade glioma progression and enhancing patient management.

Chilaca-Rosas MF, Contreras-Aguilar MT, Pallach-Loose F, Altamirano-Bustamante NF, Salazar-Calderon DR, Revilla-Monsalve C, Heredia-Gutiérrez JC, Conde-Castro B, Medrano-Guzmán R, Altamirano-Bustamante MM

pubmed logopapersMay 8 2025
High-grade gliomas, particularly glioblastoma (MeSH:Glioblastoma), are among the most aggressive and lethal central nervous system tumors, necessitating advanced diagnostic and prognostic strategies. This systematic review and epistemic meta-analysis explore the integration of Artificial Intelligence (AI) and Radiomics Inter-field (AIRI) to enhance predictive modeling for tumor progression. A comprehensive literature search identified 19 high-quality studies, which were analyzed to evaluate radiomic features and machine learning models in predicting overall survival (OS) and progression-free survival (PFS). Key findings highlight the predictive strength of specific MRI-derived radiomic features such as log-filter and Gabor textures and the superior performance of Support Vector Machines (SVM) and Random Forest (RF) models, achieving high accuracy and AUC scores (e.g., 98% AUC and 98.7% accuracy for OS). This research demonstrates the current state of the AIRI field and shows that current articles report their results with different performance indicators and metrics, making outcomes heterogenous and hard to integrate knowledge. Additionally, it was explored that today some articles use biased methodologies. This study proposes a structured AIRI development roadmap and guidelines, to avoid bias and make results comparable, emphasizing standardized feature extraction and AI model training to improve reproducibility across clinical settings. By advancing precision medicine, AIRI integration has the potential to refine clinical decision-making and enhance patient outcomes.

Machine learning-based approaches for distinguishing viral and bacterial pneumonia in paediatrics: A scoping review.

Rickard D, Kabir MA, Homaira N

pubmed logopapersMay 8 2025
Pneumonia is the leading cause of hospitalisation and mortality among children under five, particularly in low-resource settings. Accurate differentiation between viral and bacterial pneumonia is essential for guiding appropriate treatment, yet it remains challenging due to overlapping clinical and radiographic features. Advances in machine learning (ML), particularly deep learning (DL), have shown promise in classifying pneumonia using chest X-ray (CXR) images. This scoping review summarises the evidence on ML techniques for classifying viral and bacterial pneumonia using CXR images in paediatric patients. This scoping review was conducted following the Joanna Briggs Institute methodology and the PRISMA-ScR guidelines. A comprehensive search was performed in PubMed, Embase, and Scopus to identify studies involving children (0-18 years) with pneumonia diagnosed through CXR, using ML models for binary or multiclass classification. Data extraction included ML models, dataset characteristics, and performance metrics. A total of 35 studies, published between 2018 and 2025, were included in this review. Of these, 31 studies used the publicly available Kermany dataset, raising concerns about overfitting and limited generalisability to broader, real-world clinical populations. Most studies (n=33) used convolutional neural networks (CNNs) for pneumonia classification. While many models demonstrated promising performance, significant variability was observed due to differences in methodologies, dataset sizes, and validation strategies, complicating direct comparisons. For binary classification (viral vs bacterial pneumonia), a median accuracy of 92.3% (range: 80.8% to 97.9%) was reported. For multiclass classification (healthy, viral pneumonia, and bacterial pneumonia), the median accuracy was 91.8% (range: 76.8% to 99.7%). Current evidence is constrained by a predominant reliance on a single dataset and variability in methodologies, which limit the generalisability and clinical applicability of findings. To address these limitations, future research should focus on developing diverse and representative datasets while adhering to standardised reporting guidelines. Such efforts are essential to improve the reliability, reproducibility, and translational potential of machine learning models in clinical settings.

False Promises in Medical Imaging AI? Assessing Validity of Outperformance Claims

Evangelia Christodoulou, Annika Reinke, Pascaline Andrè, Patrick Godau, Piotr Kalinowski, Rola Houhou, Selen Erkan, Carole H. Sudre, Ninon Burgos, Sofiène Boutaj, Sophie Loizillon, Maëlys Solal, Veronika Cheplygina, Charles Heitz, Michal Kozubek, Michela Antonelli, Nicola Rieke, Antoine Gilson, Leon D. Mayer, Minu D. Tizabi, M. Jorge Cardoso, Amber Simpson, Annette Kopp-Schneider, Gaël Varoquaux, Olivier Colliot, Lena Maier-Hein

arxiv logopreprintMay 7 2025
Performance comparisons are fundamental in medical imaging Artificial Intelligence (AI) research, often driving claims of superiority based on relative improvements in common performance metrics. However, such claims frequently rely solely on empirical mean performance. In this paper, we investigate whether newly proposed methods genuinely outperform the state of the art by analyzing a representative cohort of medical imaging papers. We quantify the probability of false claims based on a Bayesian approach that leverages reported results alongside empirically estimated model congruence to estimate whether the relative ranking of methods is likely to have occurred by chance. According to our results, the majority (>80%) of papers claims outperformance when introducing a new method. Our analysis further revealed a high probability (>5%) of false outperformance claims in 86% of classification papers and 53% of segmentation papers. These findings highlight a critical flaw in current benchmarking practices: claims of outperformance in medical imaging AI are frequently unsubstantiated, posing a risk of misdirecting future research efforts.

Nonperiodic dynamic CT reconstruction using backward-warping INR with regularization of diffeomorphism (BIRD)

Muge Du, Zhuozhao Zheng, Wenying Wang, Guotao Quan, Wuliang Shi, Le Shen, Li Zhang, Liang Li, Yinong Liu, Yuxiang Xing

arxiv logopreprintMay 6 2025
Dynamic computed tomography (CT) reconstruction faces significant challenges in addressing motion artifacts, particularly for nonperiodic rapid movements such as cardiac imaging with fast heart rates. Traditional methods struggle with the extreme limited-angle problems inherent in nonperiodic cases. Deep learning methods have improved performance but face generalization challenges. Recent implicit neural representation (INR) techniques show promise through self-supervised deep learning, but have critical limitations: computational inefficiency due to forward-warping modeling, difficulty balancing DVF complexity with anatomical plausibility, and challenges in preserving fine details without additional patient-specific pre-scans. This paper presents a novel INR-based framework, BIRD, for nonperiodic dynamic CT reconstruction. It addresses these challenges through four key contributions: (1) backward-warping deformation that enables direct computation of each dynamic voxel with significantly reduced computational cost, (2) diffeomorphism-based DVF regularization that ensures anatomically plausible deformations while maintaining representational capacity, (3) motion-compensated analytical reconstruction that enhances fine details without requiring additional pre-scans, and (4) dimensional-reduction design for efficient 4D coordinate encoding. Through various simulations and practical studies, including digital and physical phantoms and retrospective patient data, we demonstrate the effectiveness of our approach for nonperiodic dynamic CT reconstruction with enhanced details and reduced motion artifacts. The proposed framework enables more accurate dynamic CT reconstruction with potential clinical applications, such as one-beat cardiac reconstruction, cinematic image sequences for functional imaging, and motion artifact reduction in conventional CT scans.

Designing a computer-assisted diagnosis system for cardiomegaly detection and radiology report generation.

Zhu T, Xu K, Son W, Linton-Reid K, Boubnovski-Martell M, Grech-Sollars M, Lain AD, Posma JM

pubmed logopapersMay 1 2025
Chest X-ray (CXR) is a diagnostic tool for cardiothoracic assessment. They make up 50% of all diagnostic imaging tests. With hundreds of images examined every day, radiologists can suffer from fatigue. This fatigue may reduce diagnostic accuracy and slow down report generation. We describe a prototype computer-assisted diagnosis (CAD) pipeline employing computer vision (CV) and Natural Language Processing (NLP). It was trained and evaluated on the publicly available MIMIC-CXR dataset. We perform image quality assessment, view labelling, and segmentation-based cardiomegaly severity classification. We use the output of the severity classification for large language model-based report generation. Four board-certified radiologists assessed the output accuracy of our CAD pipeline. Across the dataset composed of 377,100 CXR images and 227,827 free-text radiology reports, our system identified 0.18% of cases with mixed-sex mentions, 0.02% of poor quality images (F1 = 0.81), and 0.28% of wrongly labelled views (accuracy 99.4%). We assigned views for 4.18% of images which have unlabelled views. Our binary cardiomegaly classification model has 95.2% accuracy. The inter-radiologist agreement on evaluating the generated report's semantics and correctness for radiologist-MIMIC is 0.62 (strict agreement) and 0.85 (relaxed agreement) similar to the radiologist-CAD agreement of 0.55 (strict) and 0.93 (relaxed). Our work found and corrected several incorrect or missing metadata annotations for the MIMIC-CXR dataset. The performance of our CAD system suggests performance on par with human radiologists. Future improvements revolve around improved text generation and the development of CV tools for other diseases.

Ground-truth-free deep learning approach for accelerated quantitative parameter mapping with memory efficient learning.

Fujita N, Yokosawa S, Shirai T, Terada Y

pubmed logopapersJan 1 2025
Quantitative MRI (qMRI) requires the acquisition of multiple images with parameter changes, resulting in longer measurement times than conventional imaging. Deep learning (DL) for image reconstruction has shown a significant reduction in acquisition time and improved image quality. In qMRI, where the image contrast varies between sequences, preparing large, fully-sampled (FS) datasets is challenging. Recently, methods that do not require FS data such as self-supervised learning (SSL) and zero-shot self-supervised learning (ZSSSL) have been proposed. Another challenge is the large GPU memory requirement for DL-based qMRI image reconstruction, owing to the simultaneous processing of multiple contrast images. In this context, Kellman et al. proposed memory-efficient learning (MEL) to save the GPU memory. This study evaluated SSL and ZSSSL frameworks with MEL to accelerate qMRI. Three experiments were conducted using the following sequences: 2D T2 mapping/MSME (Experiment 1), 3D T1 mapping/VFA-SPGR (Experiment 2), and 3D T2 mapping/DESS (Experiment 3). Each experiment used the undersampled k-space data under acceleration factors of 4, 8, and 12. The reconstructed maps were evaluated using quantitative metrics. In this study, we performed three qMRI reconstruction measurements and compared the performance of the SL- and GT-free learning methods, SSL and ZSSSL. Overall, the performances of SSL and ZSSSL were only slightly inferior to those of SL, even under high AF conditions. The quantitative errors in diagnostically important tissues (WM, GM, and meniscus) were small, demonstrating that SL and ZSSSL performed comparably. Additionally, by incorporating a GPU memory-saving implementation, we demonstrated that the network can operate on a GPU with a small memory (<8GB) with minimal speed reduction. This study demonstrates the effectiveness of memory-efficient GT-free learning methods using MEL to accelerate qMRI.
Page 14 of 14137 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.