Sort by:
Page 14 of 42416 results

Deep Learning Models for CT Segmentation of Invasive Pulmonary Aspergillosis, Mucormycosis, Bacterial Pneumonia and Tuberculosis: A Multicentre Study.

Li Y, Huang F, Chen D, Zhang Y, Zhang X, Liang L, Pan J, Tan L, Liu S, Lin J, Li Z, Hu G, Chen H, Peng C, Ye F, Zheng J

pubmed logopapersJul 1 2025
The differential diagnosis of invasive pulmonary aspergillosis (IPA), pulmonary mucormycosis (PM), bacterial pneumonia (BP) and pulmonary tuberculosis (PTB) are challenging due to overlapping clinical and imaging features. Manual CT lesion segmentation is time-consuming, deep-learning (DL)-based segmentation models offer a promising solution, yet disease-specific models for these infections remain underexplored. We aimed to develop and validate dedicated CT segmentation models for IPA, PM, BP and PTB to enhance diagnostic accuracy. Methods:Retrospective multi-centre data (115 IPA, 53 PM, 130 BP, 125 PTB) were used for training/internal validation, with 21 IPA, 8PM, 30 BP and 31 PTB cases for external validation. Expert-annotated lesions served as ground truth. An improved 3D U-Net architecture was employed for segmentation, with preprocessing steps including normalisations, cropping and data augmentation. Performance was evaluated using Dice coefficients. Results:Internal validation achieved Dice scores of 78.83% (IPA), 93.38% (PM), 80.12% (BP) and 90.47% (PTB). External validation showed slightly reduced but robust performance: 75.09% (IPA), 77.53% (PM), 67.40% (BP) and 80.07% (PTB). The PM model demonstrated exceptional generalisability, scoring 83.41% on IPA data. Cross-validation revealed mutual applicability, with IPA/PTB models achieving > 75% Dice for each other's lesions. BP segmentation showed lower but clinically acceptable performance ( >72%), likely due to complex radiological patterns. Disease-specific DL segmentation models exhibited high accuracy, particularly for PM and PTB. While IPA and BP models require refinement, all demonstrated cross-disease utility, suggesting immediate clinical value for preliminary lesion annotation. Future efforts should enhance datasets and optimise models for intricate cases.

Deep Learning-enhanced Opportunistic Osteoporosis Screening in Ultralow-Voltage (80 kV) Chest CT: A Preliminary Study.

Li Y, Liu S, Zhang Y, Zhang M, Jiang C, Ni M, Jin D, Qian Z, Wang J, Pan X, Yuan H

pubmed logopapersJul 1 2025
To explore the feasibility of deep learning (DL)-enhanced, fully automated bone mineral density (BMD) measurement using the ultralow-voltage 80 kV chest CT scans performed for lung cancer screening. This study involved 987 patients who underwent 80 kV chest and 120 kV lumbar CT from January to July 2024. Patients were collected from six CT scanners and divided into the training, validation, and test sets 1 and 2 (561: 177: 112: 137). Four convolutional neural networks (CNNs) were employed for automated segmentation (3D VB-Net and SCN), region of interest extraction (3D VB-Net), and BMD calculation (DenseNet and ResNet) of the target vertebrae (T12-L2). The BMD values of T12-L2 were obtained using 80 and 120 kV quantitative CT (QCT), the latter serving as the standard reference. Linear regression and Bland-Altman analyses were used to compare BMD values between 120 kV QCT and 80 kV CNNs, and between 120 kV QCT and 80 kV QCT. Receiver operating characteristic curve analysis was used to assess the diagnostic performance of the 80 kV CNNs and 80 kV QCT for osteoporosis and low BMD from normal BMD. Linear regression and Bland-ltman analyses revealed a stronger correlation (R<sup>2</sup>=0.991-0.998 and 0.990-0.991, P<0.001) and better agreement (mean error, -1.36 to 1.62 and 1.72 to 2.27 mg/cm<sup>3</sup>; 95% limits of agreement, -9.73 to 7.01 and -5.71 to 10.19mg/cm<sup>3</sup>) for BMD between 120 kV QCT and 80 kV CNNs than between 120 kV QCT and 80 kV QCT. The areas under the curve of the 80 kV CNNs and 80 kV QCT in detecting osteoporosis and low BMD were 0.997-1.000 and 0.997-0.998, and 0.998-1.000 and 0.997, respectively. The DL method could achieve fully automated BMD calculation for opportunistic osteoporosis screening with high accuracy using ultralow-voltage 80 kV chest CT performed for lung cancer screening.

Machine-Learning-Based Computed Tomography Radiomics Regression Model for Predicting Pulmonary Function.

Wang W, Sun Y, Wu R, Jin L, Shi Z, Tuersun B, Yang S, Li M

pubmed logopapersJul 1 2025
Chest computed tomography (CT) radiomics can be utilized for categorical predictions; however, models predicting pulmonary function indices directly are lacking. This study aimed to develop machine-learning-based regression models to predict pulmonary function using chest CT radiomics. This retrospective study enrolled patients who underwent chest CT and pulmonary function tests between January 2018 and April 2024. Machine-learning regression models were constructed and validated to predict pulmonary function indices, including forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV<sub>1</sub>). The models incorporated radiomics of the whole lung and clinical features. Model performance was evaluated using mean absolute error, mean squared error, root mean squared error, concordance correlation coefficient (CCC), and R-squared (R<sup>2</sup>) value and compared to spirometry results. Individual explanations of the models' decisions were analyzed using an explainable approach based on SHapley Additive exPlanations. In total, 1585 cases were included in the analysis, with 102 of them being external cases. Across the training, validation, test, and external test sets, the combined model consistently achieved the best performance in the regression task for predicting FVC (e.g. external test set: CCC, 0.745 [95% confidence interval 0.642-0.818]; R<sup>2</sup>, 0.601 [0.453-0.707]) and FEV<sub>1</sub> (e.g. external test set: CCC, 0.744 [0.633-0.824]; R<sup>2</sup>, 0.527 [0.298-0.675]). Age, sex, and emphysema were important factors for both FVC and FEV<sub>1</sub>, while distinct radiomics features contributed to each. Whole-lung-based radiomics features can be used to construct regression models to improve pulmonary function prediction.

Preoperative Prediction of STAS Risk in Primary Lung Adenocarcinoma Using Machine Learning: An Interpretable Model with SHAP Analysis.

Wang P, Cui J, Du H, Qian Z, Zhan H, Zhang H, Ye W, Meng W, Bai R

pubmed logopapersJul 1 2025
Accurate preoperative prediction of spread through air spaces (STAS) in primary lung adenocarcinoma (LUAD) is critical for optimizing surgical strategies and improving patient outcomes. To develop a machine learning (ML) based model to predict STAS using preoperative CT imaging features and clinicopathological data, while enhancing interpretability through shapley additive explanations (SHAP) analysis. This multicenter retrospective study included 1237 patients with pathologically confirmed primary LUAD from three hospitals. Patients from Center 1 (n=932) were divided into a training set (n=652) and an internal test set (n=280). Patients from Centers 2 (n=165) and 3 (n=140) formed external validation sets. CT imaging features and clinical variables were selected using Boruta and least absolute shrinkage and selection operator regression. Seven ML models were developed and evaluated using five-fold cross-validation. Performance was assessed using F1 score, recall, precision, specificity, sensitivity, and area under the receiver operating characteristic curve (AUC). The Extreme Gradient Boosting (XGB) model achieved AUCs of 0.973 (training set), 0.862 (internal test set), and 0.842/0.810 (external validation sets). SHAP analysis identified nodule type, carcinoembryonic antigen, maximum nodule diameter, and lobulated sign as key features for predicting STAS. Logistic regression analysis confirmed these as independent risk factors. The XGB model demonstrated high predictive accuracy and interpretability for STAS. By integrating widely available clinical and imaging features, this model offers a practical and effective tool for preoperative risk stratification, supporting personalized surgical planning in primary LUAD management.

Virtual lung screening trial (VLST): An in silico study inspired by the national lung screening trial for lung cancer detection.

Tushar FI, Vancoillie L, McCabe C, Kavuri A, Dahal L, Harrawood B, Fryling M, Zarei M, Sotoudeh-Paima S, Ho FC, Ghosh D, Harowicz MR, Tailor TD, Luo S, Segars WP, Abadi E, Lafata KJ, Lo JY, Samei E

pubmed logopapersJul 1 2025
Clinical imaging trials play a crucial role in advancing medical innovation but are often costly, inefficient, and ethically constrained. Virtual Imaging Trials (VITs) present a solution by simulating clinical trial components in a controlled, risk-free environment. The Virtual Lung Screening Trial (VLST), an in silico study inspired by the National Lung Screening Trial (NLST), illustrates the potential of VITs to expedite clinical trials, minimize risks to participants, and promote optimal use of imaging technologies in healthcare. This study aimed to show that a virtual imaging trial platform could investigate some key elements of a major clinical trial, specifically the NLST, which compared Computed tomography (CT) and chest radiography (CXR) for lung cancer screening. With simulated cancerous lung nodules, a virtual patient cohort of 294 subjects was created using XCAT human models. Each virtual patient underwent both CT and CXR imaging, with deep learning models, the AI CT-Reader and AI CXR-Reader, acting as virtual readers to perform recall patients with suspicion of lung cancer. The primary outcome was the difference in diagnostic performance between CT and CXR, measured by the Area Under the Curve (AUC). The AI CT-Reader showed superior diagnostic accuracy, achieving an AUC of 0.92 (95 % CI: 0.90-0.95) compared to the AI CXR-Reader's AUC of 0.72 (95 % CI: 0.67-0.77). Furthermore, at the same 94 % CT sensitivity reported by the NLST, the VLST specificity of 73 % was similar to the NLST specificity of 73.4 %. This CT performance highlights the potential of VITs to replicate certain aspects of clinical trials effectively, paving the way toward a safe and efficient method for advancing imaging-based diagnostics.

Evaluating a large language model's accuracy in chest X-ray interpretation for acute thoracic conditions.

Ostrovsky AM

pubmed logopapersJul 1 2025
The rapid advancement of artificial intelligence (AI) has great ability to impact healthcare. Chest X-rays are essential for diagnosing acute thoracic conditions in the emergency department (ED), but interpretation delays due to radiologist availability can impact clinical decision-making. AI models, including deep learning algorithms, have been explored for diagnostic support, but the potential of large language models (LLMs) in emergency radiology remains largely unexamined. This study assessed ChatGPT's feasibility in interpreting chest X-rays for acute thoracic conditions commonly encountered in the ED. A subset of 1400 images from the NIH Chest X-ray dataset was analyzed, representing seven pathology categories: Atelectasis, Effusion, Emphysema, Pneumothorax, Pneumonia, Mass, and No Finding. ChatGPT 4.0, utilizing the "X-Ray Interpreter" add-on, was evaluated for its diagnostic performance across these categories. ChatGPT demonstrated high performance in identifying normal chest X-rays, with a sensitivity of 98.9 %, specificity of 93.9 %, and accuracy of 94.7 %. However, the model's performance varied across pathologies. The best results were observed in diagnosing pneumonia (sensitivity 76.2 %, specificity 93.7 %) and pneumothorax (sensitivity 77.4 %, specificity 89.1 %), while performance for atelectasis and emphysema was lower. ChatGPT demonstrates potential as a supplementary tool for differentiating normal from abnormal chest X-rays, with promising results for certain pathologies like pneumonia. However, its diagnostic accuracy for more subtle conditions requires improvement. Further research integrating ChatGPT with specialized image recognition models could enhance its performance, offering new possibilities in medical imaging and education.

Multi-label pathology editing of chest X-rays with a Controlled Diffusion Model.

Chu H, Qi X, Wang H, Liang Y

pubmed logopapersJul 1 2025
Large-scale generative models have garnered significant attention in the field of medical imaging, particularly for image editing utilizing diffusion models. However, current research has predominantly concentrated on pathological editing involving single or a limited number of labels, making it challenging to achieve precise modifications. Inaccurate alterations may lead to substantial discrepancies between the generated and original images, thereby impacting the clinical applicability of these models. This paper presents a diffusion model with untangling capabilities applied to chest X-ray image editing, incorporating a mask-based mechanism for bone and organ information. We successfully perform multi-label pathological editing of chest X-ray images without compromising the integrity of the original thoracic structure. The proposed technology comprises a chest X-ray image classifier and an intricate organ mask; the classifier supplies essential feature labels that require untangling for the stabilized diffusion model, while the complex organ mask facilitates directed and controllable edits to chest X-rays. We assessed the outcomes of our proposed algorithm, named Chest X-rays_Mpe, using MS-SSIM and CLIP scores alongside qualitative evaluations conducted by radiology experts. The results indicate that our approach surpasses existing algorithms across both quantitative and qualitative metrics.

Current State of Fibrotic Interstitial Lung Disease Imaging.

Chelala L, Brixey AG, Hobbs SB, Kanne JP, Kligerman SJ, Lynch DA, Chung JH

pubmed logopapersJul 1 2025
Interstitial lung disease (ILD) diagnosis is complex, continuously evolving, and increasingly reliant on thin-section chest CT. Multidisciplinary discussion aided by a thorough radiologic review can achieve a high-confidence diagnosis of ILD in the majority of patients and is currently the reference standard for ILD diagnosis. CT also allows the early recognition of interstitial lung abnormalities, possibly reflective of unsuspected ILD and progressive in a substantial proportion of patients. Beyond diagnosis, CT has also become essential for ILD prognostication and follow-up, aiding the identification of fibrotic and progressive forms. The presence of fibrosis is a critical determinant of prognosis, particularly when typical features of usual interstitial pneumonia (UIP) are identified. The UIP-centric imaging approach emphasized in this review is justified by the prognostic significance of UIP, the prevalence of UIP in idiopathic pulmonary fibrosis, and its strong radiologic-pathologic correlation. In nonidiopathic pulmonary fibrosis ILD, progressive pulmonary fibrosis carries clinically significant prognostic and therapeutic implications. With growing evidence and the emergence of novel ILD-related concepts, recent updates of several imaging guidelines aim to optimize the approach to ILD. Artificial intelligence tools are promising adjuncts to the qualitative CT assessment and will likely augment the role of CT in the ILD realm.

Deep Learning Estimation of Small Airway Disease from Inspiratory Chest Computed Tomography: Clinical Validation, Repeatability, and Associations with Adverse Clinical Outcomes in Chronic Obstructive Pulmonary Disease.

Chaudhary MFA, Awan HA, Gerard SE, Bodduluri S, Comellas AP, Barjaktarevic IZ, Barr RG, Cooper CB, Galban CJ, Han MK, Curtis JL, Hansel NN, Krishnan JA, Menchaca MG, Martinez FJ, Ohar J, Vargas Buonfiglio LG, Paine R, Bhatt SP, Hoffman EA, Reinhardt JM

pubmed logopapersJul 1 2025
<b>Rationale:</b> Quantifying functional small airway disease (fSAD) requires additional expiratory computed tomography (CT) scans, limiting clinical applicability. Artificial intelligence (AI) could enable fSAD quantification from chest CT scans at total lung capacity (TLC) alone (fSAD<sup>TLC</sup>). <b>Objectives:</b> To evaluate an AI model for estimating fSAD<sup>TLC</sup>, compare it with dual-volume parametric response mapping fSAD (fSAD<sup>PRM</sup>), and assess its clinical associations and repeatability in chronic obstructive pulmonary disease (COPD). <b>Methods:</b> We analyzed 2,513 participants from SPIROMICS (the Subpopulations and Intermediate Outcome Measures in COPD Study). Using a randomly sampled subset (<i>n</i> = 1,055), we developed a generative model to produce virtual expiratory CT scans for estimating fSAD<sup>TLC</sup> in the remaining 1,458 SPIROMICS participants. We compared fSAD<sup>TLC</sup> with dual-volume fSAD<sup>PRM</sup>. We investigated univariate and multivariable associations of fSAD<sup>TLC</sup> with FEV<sub>1</sub>, FEV<sub>1</sub>/FVC ratio, 6-minute-walk distance, St. George's Respiratory Questionnaire score, and FEV<sub>1</sub> decline. The results were validated in a subset of patients from the COPDGene (Genetic Epidemiology of COPD) study (<i>n</i> = 458). Multivariable models were adjusted for age, race, sex, body mass index, baseline FEV<sub>1</sub>, smoking pack-years, smoking status, and percent emphysema. <b>Measurements and Main Results:</b> Inspiratory fSAD<sup>TLC</sup> showed a strong correlation with fSAD<sup>PRM</sup> in SPIROMICS (Pearson's <i>R</i> = 0.895) and COPDGene (<i>R</i> = 0.897) cohorts. Higher fSAD<sup>TLC</sup> levels were significantly associated with lower lung function, including lower postbronchodilator FEV<sub>1</sub> (in liters) and FEV<sub>1</sub>/FVC ratio, and poorer quality of life reflected by higher total St. George's Respiratory Questionnaire scores independent of percent CT emphysema. In SPIROMICS, individuals with higher fSAD<sup>TLC</sup> experienced an annual decline in FEV<sub>1</sub> of 1.156 ml (relative decrease; 95% confidence interval [CI], 0.613-1.699; <i>P</i> < 0.001) per year for every 1% increase in fSAD<sup>TLC</sup>. The rate of decline in the COPDGene cohort was slightly lower at 0.866 ml/yr (relative decrease; 95% CI, 0.345-1.386; <i>P</i> < 0.001) per 1% increase in fSAD<sup>TLC</sup>. Inspiratory fSAD<sup>TLC</sup> demonstrated greater consistency between repeated measurements, with a higher intraclass correlation coefficient of 0.99 (95% CI, 0.98-0.99) compared with fSAD<sup>PRM</sup> (0.83; 95% CI, 0.76-0.88). <b>Conclusions:</b> Small airway disease can be reliably assessed from a single inspiratory CT scan using generative AI, eliminating the need for an additional expiratory CT scan. fSAD estimation from inspiratory CT correlates strongly with fSAD<sup>PRM</sup>, demonstrates a significant association with FEV<sub>1</sub> decline, and offers greater repeatability.
Page 14 of 42416 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.