Sort by:
Page 137 of 1621612 results

MSLesSeg: baseline and benchmarking of a new Multiple Sclerosis Lesion Segmentation dataset.

Guarnera F, Rondinella A, Crispino E, Russo G, Di Lorenzo C, Maimone D, Pappalardo F, Battiato S

pubmed logopapersMay 31 2025
This paper presents MSLesSeg, a new, publicly accessible MRI dataset designed to advance research in Multiple Sclerosis (MS) lesion segmentation. The dataset comprises 115 scans of 75 patients including T1, T2 and FLAIR sequences, along with supplementary clinical data collected across different sources. Expert-validated annotations provide high-quality lesion segmentation labels, establishing a reliable human-labeled dataset for benchmarking. Part of the dataset was shared with expert scientists with the aim to compare the last automatic AI-based image segmentation solutions with an expert-biased handmade segmentation. In addition, an AI-based lesion segmentation of MSLesSeg was developed and technically validated against the last state-of-the-art methods. The dataset, the detailed analysis of researcher contributions, and the baseline results presented here mark a significant milestone for advancing automated MS lesion segmentation research.

Accelerated proton resonance frequency-based magnetic resonance thermometry by optimized deep learning method.

Xu S, Zong S, Mei CS, Shen G, Zhao Y, Wang H

pubmed logopapersMay 31 2025
Proton resonance frequency (PRF)-based magnetic resonance (MR) thermometry plays a critical role in thermal ablation therapies through focused ultrasound (FUS). For clinical applications, accurate and rapid temperature feedback is essential to ensure both the safety and effectiveness of these treatments. This work aims to improve temporal resolution in dynamic MR temperature map reconstructions using an enhanced deep-learning method, thereby supporting the real-time monitoring required for effective FUS treatments. Five classical neural network architectures-cascade net, complex-valued U-Net, shift window transformer for MRI, real-valued U-Net, and U-Net with residual blocks-along with training-optimized methods were applied to reconstruct temperature maps from 2-fold and 4-fold undersampled k-space data. The training enhancements included pre-training/training-phase data augmentations, knowledge distillation, and a novel amplitude-phase decoupling loss function. Phantom and ex vivo tissue heating experiments were conducted using a FUS transducer. Ground truth was the complex MR images with accurate temperature changes, and datasets were manually undersampled to simulate such acceleration here. Separate testing datasets were used to evaluate real-time performance and temperature accuracy. Furthermore, our proposed deep learning-based rapid reconstruction approach was validated on a clinical dataset obtained from patients with uterine fibroids, demonstrating its clinical applicability. Acceleration factors of 1.9 and 3.7 were achieved for 2× and 4× k-space under samplings, respectively. The deep learning-based reconstruction using ResUNet incorporating the four optimizations, showed superior performance. For 2-fold acceleration, the RMSE of temperature map patches were 0.89°C and 1.15°C for the phantom and ex vivo testing datasets, respectively. The DICE coefficient for the 43°C isotherm-enclosed regions was 0.81, and the Bland-Altman analysis indicated a bias of -0.25°C with limits of agreement of ±2.16°C. In the 4-fold under-sampling case, these evaluation metrics showed approximately a 10% reduction in accuracy. Additionally, the DICE coefficient measuring the overlap between the reconstructed temperature maps (using the optimized ResUNet) and the ground truth, specifically in regions where the temperature exceeded the 43°C threshold, were 0.77 and 0.74 for the 2× and 4× under-sampling scenarios, respectively. This study demonstrates that deep learning-based reconstruction significantly enhances the accuracy and efficiency of MR thermometry, particularly in the context of FUS-based clinical treatments for uterine fibroids. This approach could also be extended to other applications such as essential tremor and prostate cancer treatments where MRI-guided FUS plays a critical role.

Deep-learning based multi-modal models for brain age, cognition and amyloid pathology prediction.

Wang C, Zhang W, Ni M, Wang Q, Liu C, Dai L, Zhang M, Shen Y, Gao F

pubmed logopapersMay 31 2025
Magnetic resonance imaging (MRI), combined with artificial intelligence techniques, has improved our understanding of brain structural change and enabled the estimation of brain age. Neurodegenerative disorders, such as Alzheimer's disease (AD), have been linked to accelerated brain aging. In this study, we aimed to develop a deep-learning framework that processes and integrates MRI images to more accurately predict brain age, cognitive function, and amyloid pathology. In this study, we aimed to develop a deep-learning framework that processes and integrates MRI images to more accurately predict brain age, cognitive function, and amyloid pathology.We collected over 10,000 T1-weighted MRI scans from more than 7,000 individuals across six cohorts. We designed a multi-modal deep-learning framework that employs 3D convolutional neural networks to analyze MRI and additional neural networks to evaluate demographic data. Our initial model focused on predicting brain age, serving as a foundational model from which we developed separate models for cognition function and amyloid plaque prediction through transfer learning. The brain age prediction model achieved the mean absolute error (MAE) for cognitive normal population in the ADNI (test) datasets of 3.302 years. The gap between predicted brain age and chronological age significantly increases while cognition declines. The cognition prediction model exhibited a root mean square error (RMSE) of 0.334 for the Clinical Dementia Rating (CDR) regression task, achieving an area under the curve (AUC) of approximately 0.95 in identifying ing dementia patients. Dementia related brain regions, such as the medial temporal lobe, were identified by our model. Finally, amyloid plaque prediction model was trained to predict amyloid plaque, and achieved an AUC about 0.8 for dementia patients. These findings indicate that the present predictive models can identify subtle changes in brain structure, enabling precise estimates of brain age, cognitive status, and amyloid pathology. Such models could facilitate the use of MRI as a non-invasive diagnostic tool for neurodegenerative diseases, including AD.

A Mixed-attention Network for Automated Interventricular Septum Segmentation in Bright-blood Myocardial T2* MRI Relaxometry in Thalassemia.

Wu X, Wang H, Chen Z, Sun S, Lian Z, Zhang X, Peng P, Feng Y

pubmed logopapersMay 30 2025
This study develops a deep-learning method for automatic segmentation of the interventricular septum (IS) in MR images to measure myocardial T2* and estimate cardiac iron deposition in patients with thalassemia. This retrospective study used multiple-gradient-echo cardiac MR scans from 419 thalassemia patients to develop and evaluate the segmentation network. The network was trained on 1.5 T images from Center 1 and evaluated on 3.0 T unseen images from Center 1, all data from Center 2, and the CHMMOTv1 dataset. Model performance was assessed using five metrics, and T2* values were obtained by fitting the network output. Bland-Altman analysis, coefficient of variation (CoV), and regression analysis were used to evaluate the consistency between automatic and manual methods. MA-BBIsegNet achieved a Dice of 0.90 on the internal test set, 0.85 on the external test set, and 0.81 on the CHMMOTv1 dataset. Bland-Altman analysis showed mean differences of 0.08 (95% LoA: -2.79 ∼ 2.63) ms (internal), 0.29 (95% LoA: -4.12 ∼ 3.54) ms (external) and 0.19 (95% LoA: -3.50 ∼ 3.88) ms (CHMMOTv1), with CoV of 8.9%, 6.8%, and 9.3%. Regression analysis yielded r values of 0.98 for the internal and CHMMOTv1 datasets, and 0.99 for the external dataset (p < 0.05). The IS segmentation network based on multiple-gradient-echo bright-blood images yielded T2* values that were in strong agreement with manual measurements, highlighting its potential for the efficient, non-invasive monitoring of myocardial iron deposition in patients with thalassemia.

Edge Computing for Physics-Driven AI in Computational MRI: A Feasibility Study

Yaşar Utku Alçalar, Yu Cao, Mehmet Akçakaya

arxiv logopreprintMay 30 2025
Physics-driven artificial intelligence (PD-AI) reconstruction methods have emerged as the state-of-the-art for accelerating MRI scans, enabling higher spatial and temporal resolutions. However, the high resolution of these scans generates massive data volumes, leading to challenges in transmission, storage, and real-time processing. This is particularly pronounced in functional MRI, where hundreds of volumetric acquisitions further exacerbate these demands. Edge computing with FPGAs presents a promising solution for enabling PD-AI reconstruction near the MRI sensors, reducing data transfer and storage bottlenecks. However, this requires optimization of PD-AI models for hardware efficiency through quantization and bypassing traditional FFT-based approaches, which can be a limitation due to their computational demands. In this work, we propose a novel PD-AI computational MRI approach optimized for FPGA-based edge computing devices, leveraging 8-bit complex data quantization and eliminating redundant FFT/IFFT operations. Our results show that this strategy improves computational efficiency while maintaining reconstruction quality comparable to conventional PD-AI methods, and outperforms standard clinical methods. Our approach presents an opportunity for high-resolution MRI reconstruction on resource-constrained devices, highlighting its potential for real-world deployment.

The Impact of Model-based Deep-learning Reconstruction Compared with that of Compressed Sensing-Sensitivity Encoding on the Image Quality and Precision of Cine Cardiac MR in Evaluating Left-ventricular Volume and Strain: A Study on Healthy Volunteers.

Tsuneta S, Aono S, Kimura R, Kwon J, Fujima N, Ishizaka K, Nishioka N, Yoneyama M, Kato F, Minowa K, Kudo K

pubmed logopapersMay 30 2025
To evaluate the effect of model-based deep-learning reconstruction (DLR) compared with that of compressed sensing-sensitivity encoding (CS) on cine cardiac magnetic resonance (CMR). Cine CMR images of 10 healthy volunteers were obtained with reduction factors of 2, 4, 6, and 8 and reconstructed using CS and DLR. The visual image quality scores assessed sharpness, image noise, and artifacts. Left-ventricular (LV) end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF) were manually measured. LV global circumferential strain (GCS) was automatically measured using the software. The precision of EDV, ESV, SV, EF, and GCS measurements was compared between CS and DLR using Bland-Altman analysis with full-sampling data as the gold standard. Compared with CS, DLR significantly improved image quality with reduction factors of 6 and 8. The precision of EDV and ESV with a reduction factor of 8, and GCS with reduction factors of 6 and 8 measurements improved with DLR compared with CS, whereas those of SV and EF measurements were not different between DLR and CS. The effect of DLR on cine CMR's image quality and precision in evaluating quantitative volume and strain was equal or superior to that of CS. DLR may replace CS for cine CMR.

Sparsity-Driven Parallel Imaging Consistency for Improved Self-Supervised MRI Reconstruction

Yaşar Utku Alçalar, Mehmet Akçakaya

arxiv logopreprintMay 30 2025
Physics-driven deep learning (PD-DL) models have proven to be a powerful approach for improved reconstruction of rapid MRI scans. In order to train these models in scenarios where fully-sampled reference data is unavailable, self-supervised learning has gained prominence. However, its application at high acceleration rates frequently introduces artifacts, compromising image fidelity. To mitigate this shortcoming, we propose a novel way to train PD-DL networks via carefully-designed perturbations. In particular, we enhance the k-space masking idea of conventional self-supervised learning with a novel consistency term that assesses the model's ability to accurately predict the added perturbations in a sparse domain, leading to more reliable and artifact-free reconstructions. The results obtained from the fastMRI knee and brain datasets show that the proposed training strategy effectively reduces aliasing artifacts and mitigates noise amplification at high acceleration rates, outperforming state-of-the-art self-supervised methods both visually and quantitatively.

Beyond the LUMIR challenge: The pathway to foundational registration models

Junyu Chen, Shuwen Wei, Joel Honkamaa, Pekka Marttinen, Hang Zhang, Min Liu, Yichao Zhou, Zuopeng Tan, Zhuoyuan Wang, Yi Wang, Hongchao Zhou, Shunbo Hu, Yi Zhang, Qian Tao, Lukas Förner, Thomas Wendler, Bailiang Jian, Benedikt Wiestler, Tim Hable, Jin Kim, Dan Ruan, Frederic Madesta, Thilo Sentker, Wiebke Heyer, Lianrui Zuo, Yuwei Dai, Jing Wu, Jerry L. Prince, Harrison Bai, Yong Du, Yihao Liu, Alessa Hering, Reuben Dorent, Lasse Hansen, Mattias P. Heinrich, Aaron Carass

arxiv logopreprintMay 30 2025
Medical image challenges have played a transformative role in advancing the field, catalyzing algorithmic innovation and establishing new performance standards across diverse clinical applications. Image registration, a foundational task in neuroimaging pipelines, has similarly benefited from the Learn2Reg initiative. Building on this foundation, we introduce the Large-scale Unsupervised Brain MRI Image Registration (LUMIR) challenge, a next-generation benchmark designed to assess and advance unsupervised brain MRI registration. Distinct from prior challenges that leveraged anatomical label maps for supervision, LUMIR removes this dependency by providing over 4,000 preprocessed T1-weighted brain MRIs for training without any label maps, encouraging biologically plausible deformation modeling through self-supervision. In addition to evaluating performance on 590 held-out test subjects, LUMIR introduces a rigorous suite of zero-shot generalization tasks, spanning out-of-domain imaging modalities (e.g., FLAIR, T2-weighted, T2*-weighted), disease populations (e.g., Alzheimer's disease), acquisition protocols (e.g., 9.4T MRI), and species (e.g., macaque brains). A total of 1,158 subjects and over 4,000 image pairs were included for evaluation. Performance was assessed using both segmentation-based metrics (Dice coefficient, 95th percentile Hausdorff distance) and landmark-based registration accuracy (target registration error). Across both in-domain and zero-shot tasks, deep learning-based methods consistently achieved state-of-the-art accuracy while producing anatomically plausible deformation fields. The top-performing deep learning-based models demonstrated diffeomorphic properties and inverse consistency, outperforming several leading optimization-based methods, and showing strong robustness to most domain shifts, the exception being a drop in performance on out-of-domain contrasts.

Multiclass ensemble framework for enhanced prostate gland Segmentation: Integrating Self-ONN decoders with EfficientNet.

Islam Sumon MS, Chowdhury MEH, Bhuiyan EH, Rahman MS, Khan MM, Al-Hashimi I, Mushtak A, Zoghoul SB

pubmed logopapersMay 30 2025
Digital pathology relies on the morphological architecture of prostate glands to recognize cancerous tissue. Prostate cancer (PCa) originates in walnut shaped prostate gland in the male reproductive system. Deep learning (DL) pipelines can assist in identifying these regions with advanced segmentation techniques which are effective in diagnosing and treating prostate diseases. This facilitates early detection, targeted biopsy, and accurate treatment planning, ensuring consistent, reproducible results while minimizing human error. Automated segmentation techniques trained on MRI datasets can aid in monitoring disease progression which leads to clinical support by developing patient-specific models for personalized medicine. In this study, we present multiclass segmentation models designed to localize the prostate gland and its zonal regions-specifically the peripheral zone (PZ), transition zone (TZ), and the whole gland-by combining EfficientNetB4 encoders with Self-organized Operational Neural Network (Self-ONN)-based decoders. Traditional convolutional neural networks (CNNs) rely on linear neuron models, which limit their ability to capture the complex dynamics of biological neural systems. In contrast, Operational Neural Networks (ONNs), particularly Self-ONNs, address this limitation by incorporating nonlinear and adaptive operations at the neuron level. We evaluated various encoder-decoder configurations and identified that the combination of an EfficientNet-based encoder with a Self-ONN-based decoder yielded the best performance. To further enhance segmentation accuracy, we employed the STAPLE method to ensemble the top three performing models. Our approach was tested on the large-scale, recently updated PI-CAI Challenge dataset using 5-fold cross-validation, achieving Dice scores of 95.33 % for the whole gland and 92.32 % for the combined PZ and TZ regions. These advanced segmentation techniques significantly improve the quality of PCa diagnosis and treatment, contributing to better patient care and outcomes.

Using AI to triage patients without clinically significant prostate cancer using biparametric MRI and PSA.

Grabke EP, Heming CAM, Hadari A, Finelli A, Ghai S, Lajkosz K, Taati B, Haider MA

pubmed logopapersMay 30 2025
To train and evaluate the performance of a machine learning triaging tool that identifies MRI negative for clinically significant prostate cancer and to compare this against non-MRI models. 2895 MRIs were collected from two sources (1630 internal, 1265 public) in this retrospective study. Risk models compared were: Prostate Cancer Prevention Trial Risk Calculator 2.0, Prostate Biopsy Collaborative Group Calculator, PSA density, U-Net segmentation, and U-Net combined with clinical parameters. The reference standard was histopathology or negative follow-up. Performance metrics were calculated by simulating a triaging workflow compared to radiologist interpreting all exams on a test set of 465 patients. Sensitivity and specificity differences were assessed using the McNemar test. Differences in PPV and NPV were assessed using the Leisenring, Alonzo and Pepe generalized score statistic. Equivalence test p-values were adjusted within each measure using Benjamini-Hochberg correction. Triaging using U-Net with clinical parameters reduced radiologist workload by 12.5% with sensitivity decrease from 93 to 90% (p = 0.023) and specificity increase from 39 to 47% (p < 0.001). This simulated workload reduction was greater than triaging with risk calculators (3.2% and 1.3%, p < 0.001), and comparable to PSA density (8.4%, p = 0.071) and U-Net alone (11.6%, p = 0.762). Both U-Net triaging strategies increased PPV (+ 2.8% p = 0.005 clinical, + 2.2% p = 0.020 nonclinical), unlike non-U-Net strategies (p > 0.05). NPV remained equivalent for all scenarios (p > 0.05). Clinically-informed U-Net triaging correctly ruled out 20 (13.4%) radiologist false positives (12 PI-RADS = 3, 8 PI-RADS = 4). Of the eight (3.6%) false negatives, two were misclassified by the radiologist. No misclassified case was interpreted as PI-RADS 5. Prostate MRI triaging using machine learning could reduce radiologist workload by 12.5% with a 3% sensitivity decrease and 8% specificity increase, outperforming triaging using non-imaging-based risk models. Further prospective validation is required.
Page 137 of 1621612 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.