Sort by:
Page 132 of 1521519 results

A Left Atrial Positioning System to Enable Follow-Up and Cohort Studies.

Mehringer NJ, McVeigh ER

pubmed logopapersMay 27 2025
We present a new algorithm to automatically convert 3-dimensional left atrium surface meshes into a standard 2-dimensional space: a Left Atrial Positioning System (LAPS). Forty-five contrast-enhanced 4- dimensional computed tomography datasets were collected from 30 subjects. The left atrium volume was segmented using a trained neural network and converted into a surface mesh. LAPS coordinates were calculated on each mesh by computing lines of longitude and latitude on the surface of the mesh with reference to the center of the posterior wall and the mitral valve. LAPS accuracy was evaluated with one-way transfer of coordinates from a template mesh to a synthetic ground truth, which was created by registering the template mesh and pre-calculated LAPS coordinates to a target mesh. The Euclidian distance error was measured between each test node and its ground truth location. The median point transfer error was 2.13 mm between follow-up scans of the same subject (n = 15) and 3.99 mm between different subjects (n = 30). The left atrium was divided into 24 anatomic regions and represented on a 2D square diagram. The Left Atrial Positioning System is fully automatic, accurate, robust to anatomic variation, and has flexible visualization for mapping data in the left atrium. This provides a framework for comparing regional LA surface data values in both follow-up and cohort studies.

Modeling Brain Aging with Explainable Triamese ViT: Towards Deeper Insights into Autism Disorder.

Zhang Z, Aggarwal V, Angelov P, Jiang R

pubmed logopapersMay 27 2025
Machine learning, particularly through advanced imaging techniques such as three-dimensional Magnetic Resonance Imaging (MRI), has significantly improved medical diagnostics. This is especially critical for diagnosing complex conditions like Alzheimer's disease. Our study introduces Triamese-ViT, an innovative Tri-structure of Vision Transformers (ViTs) that incorporates a built-in interpretability function, it has structure-aware explainability that allows for the identification and visualization of key features or regions contributing to the prediction, integrates information from three perspectives to enhance brain age estimation. This method not only increases accuracy but also improves interoperability with existing techniques. When evaluated, Triamese-ViT demonstrated superior performance and produced insightful attention maps. We applied these attention maps to the analysis of natural aging and the diagnosis of Autism Spectrum Disorder (ASD). The results aligned with those from occlusion analysis, identifying the Cingulum, Rolandic Operculum, Thalamus, and Vermis as important regions in normal aging, and highlighting the Thalamus and Caudate Nucleus as key regions for ASD diagnosis.

ToPoMesh: accurate 3D surface reconstruction from CT volumetric data via topology modification.

Chen J, Zhu Q, Xie B, Li T

pubmed logopapersMay 27 2025
Traditional computed tomography (CT) methods for 3D reconstruction face resolution limitations and require time-consuming post-processing workflows. While deep learning techniques improve the accuracy of segmentation, traditional voxel-based segmentation and surface reconstruction pipelines tend to introduce artifacts such as disconnected regions, topological inconsistencies, and stepped distortions. To overcome these challenges, we propose ToPoMesh, an end-to-end 3D mesh reconstruction deep learning framework for direct reconstruction of high-fidelity surface meshes from CT volume data. To address the existing problems, our approach introduces three core innovations: (1) accurate local and global shape modeling by preserving and enhancing local feature information through residual connectivity and self-attention mechanisms in graph convolutional networks; (2) an adaptive variant density (Avd) mesh de-pooling strategy, which dynamically optimizes the vertex distribution; (3) a topology modification module that iteratively prunes the error surfaces and boundary smoothing via variable regularity terms to obtain finer mesh surfaces. Experiments on the LiTS, MSD pancreas tumor, MSD hippocampus, and MSD spleen datasets demonstrate that ToPoMesh outperforms state-of-the-art methods. Quantitative evaluations demonstrate a 57.4% reduction in Chamfer distance (liver) and a 0.47% improvement in F-score compared to end-to-end 3D reconstruction methods, while qualitative results confirm enhanced fidelity for thin structures and complex anatomical topologies versus segmentation frameworks. Importantly, our method eliminates the need for manual post-processing, realizes the ability to reconstruct 3D meshes from images, and can provide precise guidance for surgical planning and diagnosis.

Dual-energy CT combined with histogram parameters in the assessment of perineural invasion in colorectal cancer.

Wang Y, Tan H, Li S, Long C, Zhou B, Wang Z, Cao Y

pubmed logopapersMay 27 2025
The purpose is to evaluate the predictive value of dual-energy CT (DECT) combined with histogram parameters and a clinical prediction model for perineural invasion (PNI) in colorectal cancer (CRC). We retrospectively analyzed clinical and imaging data from 173 CRC patients who underwent preoperative DECT-enhanced scanning at two centers. Data from Qinghai University Affiliated Hospital (n = 120) were randomly divided into training and validation sets, while data from Lanzhou University Second Hospital (n = 53) served as the external validation set. Regions of interest (ROIs) were delineated to extract spectral and histogram parameters, and multivariate logistic regression identified optimal predictors. Six machine learning models-support vector machine (SVM), decision tree (DT), random forest (RF), logistic regression (LR), k-nearest neighbors (KNN), and extreme gradient boosting (XGBoost)-were constructed. Model performance and clinical utility were assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Four independent predictive factors were identified through multivariate analysis: entropy, CT40<sub>KeV</sub>, CEA, and skewness. Among the six classifier models, RF model demonstrated the best performance in the training set (AUC = 0.918, 95% CI: 0.862-0.969). In the validation set, RF outperformed other models (AUC = 0.885, 95% CI: 0.772-0.972). Notably, in the external validation set, the XGBoost model achieved the highest performance (AUC = 0.823, 95% CI: 0.672-0.945). Dual-energy CT-based combined with histogram parameters and clinical prediction modeling can be effectively used for preoperative noninvasive assessment of perineural invasion in colorectal cancer.

Development of an Open-Source Algorithm for Automated Segmentation in Clinician-Led Paranasal Sinus Radiologic Research.

Darbari Kaul R, Zhong W, Liu S, Azemi G, Liang K, Zou E, Sacks PL, Thiel C, Campbell RG, Kalish L, Sacks R, Di Ieva A, Harvey RJ

pubmed logopapersMay 27 2025
Artificial Intelligence (AI) research needs to be clinician led; however, expertise typically lies outside their skill set. Collaborations exist but are often commercially driven. Free and open-source computational algorithms and software expertise are required for meaningful clinically driven AI medical research. Deep learning algorithms automate segmenting regions of interest for analysis and clinical translation. Numerous studies have automatically segmented paranasal sinus computed tomography (CT) scans; however, openly accessible algorithms capturing the sinonasal cavity remain scarce. The purpose of this study was to validate and provide an open-source segmentation algorithm for paranasal sinus CTs for the otolaryngology research community. A cross-sectional comparative study was conducted with a deep learning algorithm, UNet++, modified for automatic segmentation of paranasal sinuses CTs and "ground-truth" manual segmentations. A dataset of 100 paranasal sinuses scans was manually segmented, with an 80/20 training/testing split. The algorithm is available at https://github.com/rheadkaul/SinusSegment. Primary outcomes included the Dice similarity coefficient (DSC) score, Intersection over Union (IoU), Hausdorff distance (HD), sensitivity, specificity, and visual similarity grading. Twenty scans representing 7300 slices were assessed. The mean DSC was 0.87 and IoU 0.80, with HD 33.61 mm. The mean sensitivity was 83.98% and specificity 99.81%. The median visual similarity grading score was 3 (good). There were no statistically significant differences in outcomes with normal or diseased paranasal sinus CTs. Automatic segmentation of CT paranasal sinuses yields good results when compared with manual segmentation. This study provides an open-source segmentation algorithm as a foundation and gateway for more complex AI-based analysis of large datasets.

Automatic assessment of lower limb deformities using high-resolution X-ray images.

Rostamian R, Panahi MS, Karimpour M, Nokiani AA, Khaledi RJ, Kashani HG

pubmed logopapersMay 27 2025
Planning an osteotomy or arthroplasty surgery on a lower limb requires prior classification/identification of its deformities. The detection of skeletal landmarks and the calculation of angles required to identify the deformities are traditionally done manually, with measurement accuracy relying considerably on the experience of the individual doing the measurements. We propose a novel, image pyramid-based approach to skeletal landmark detection. The proposed approach uses a Convolutional Neural Network (CNN) that receives the raw X-ray image as input and produces the coordinates of the landmarks. The landmark estimations are modified iteratively via the error feedback method to come closer to the target. Our clinically produced full-leg X-Rays dataset is made publically available and used to train and test the network. Angular quantities are calculated based on detected landmarks. Angles are then classified as lower than normal, normal or higher than normal according to predefined ranges for a normal condition. The performance of our approach is evaluated at several levels: landmark coordinates accuracy, angles' measurement accuracy, and classification accuracy. The average absolute error (difference between automatically and manually determined coordinates) for landmarks was 0.79 ± 0.57 mm on test data, and the average absolute error (difference between automatically and manually calculated angles) for angles was 0.45 ± 0.42°. Results from multiple case studies involving high-resolution images show that the proposed approach outperforms previous deep learning-based approaches in terms of accuracy and computational cost. It also enables the automatic detection of the lower limb misalignments in full-leg x-ray images.

Multicentre evaluation of deep learning CT autosegmentation of the head and neck region for radiotherapy.

Pang EPP, Tan HQ, Wang F, Niemelä J, Bolard G, Ramadan S, Kiljunen T, Capala M, Petit S, Seppälä J, Vuolukka K, Kiitam I, Zolotuhhin D, Gershkevitsh E, Lehtiö K, Nikkinen J, Keyriläinen J, Mokka M, Chua MLK

pubmed logopapersMay 27 2025
This is a multi-institutional study to evaluate a head-and-neck CT auto-segmentation software across seven institutions globally. 11 lymph node levels and 7 organs-at-risk contours were evaluated in a two-phase study design. Time savings were measured in both phases, and the inter-observer variability across the seven institutions was quantified in phase two. Overall time savings were found to be 42% in phase one and 49% in phase two. Lymph node levels IA, IB, III, IVA, and IVB showed no significant time savings, with some centers reporting longer editing times than manual delineation. All the edited ROIs showed reduced inter-observer variability compared to manual segmentation. Our study shows that auto-segmentation plays a crucial role in harmonizing contouring practices globally. However, the clinical benefits of auto-segmentation software vary significantly across ROIs and between clinics. To maximize its potential, institution-specific commissioning is required to optimize the clinical benefits.

Prostate Cancer Screening with Artificial Intelligence-Enhanced Micro-Ultrasound: A Comparative Study with Traditional Methods

Muhammad Imran, Wayne G. Brisbane, Li-Ming Su, Jason P. Joseph, Wei Shao

arxiv logopreprintMay 27 2025
Background and objective: Micro-ultrasound (micro-US) is a novel imaging modality with diagnostic accuracy comparable to MRI for detecting clinically significant prostate cancer (csPCa). We investigated whether artificial intelligence (AI) interpretation of micro-US can outperform clinical screening methods using PSA and digital rectal examination (DRE). Methods: We retrospectively studied 145 men who underwent micro-US guided biopsy (79 with csPCa, 66 without). A self-supervised convolutional autoencoder was used to extract deep image features from 2D micro-US slices. Random forest classifiers were trained using five-fold cross-validation to predict csPCa at the slice level. Patients were classified as csPCa-positive if 88 or more consecutive slices were predicted positive. Model performance was compared with a classifier using PSA, DRE, prostate volume, and age. Key findings and limitations: The AI-based micro-US model and clinical screening model achieved AUROCs of 0.871 and 0.753, respectively. At a fixed threshold, the micro-US model achieved 92.5% sensitivity and 68.1% specificity, while the clinical model showed 96.2% sensitivity but only 27.3% specificity. Limitations include a retrospective single-center design and lack of external validation. Conclusions and clinical implications: AI-interpreted micro-US improves specificity while maintaining high sensitivity for csPCa detection. This method may reduce unnecessary biopsies and serve as a low-cost alternative to PSA-based screening. Patient summary: We developed an AI system to analyze prostate micro-ultrasound images. It outperformed PSA and DRE in detecting aggressive cancer and may help avoid unnecessary biopsies.

Machine learning decision support model construction for craniotomy approach of pineal region tumors based on MRI images.

Chen Z, Chen Y, Su Y, Jiang N, Wanggou S, Li X

pubmed logopapersMay 27 2025
Pineal region tumors (PRTs) are rare but deep-seated brain tumors, and complete surgical resection is crucial for effective tumor treatment. The choice of surgical approach is often challenging due to the low incidence and deep location. This study aims to combine machine learning and deep learning algorithms with pre-operative MRI images to build a model for PRTs surgical approaches recommendation, striving to model clinical experience for practical reference and education. This study was a retrospective study which enrolled a total of 173 patients diagnosed with PRTs radiologically from our hospital. Three traditional surgical approaches of were recorded for prediction label. Clinical and VASARI related radiological information were selected for machine learning prediction model construction. And MRI images from axial, sagittal and coronal views of orientation were also used for deep learning craniotomy approach prediction model establishment and evaluation. 5 machine learning methods were applied to construct the predictive classifiers with the clinical and VASARI features and all methods could achieve area under the ROC (Receiver operating characteristic) curve (AUC) values over than 0.7. And also, 3 deep learning algorithms (ResNet-50, EfficientNetV2-m and ViT) were applied based on MRI images from different orientations. EfficientNetV2-m achieved the highest AUC value of 0.89, demonstrating a significant high performance of prediction. And class activation mapping was used to reveal that the tumor itself and its surrounding relations are crucial areas for model decision-making. In our study, we used machine learning and deep learning to construct surgical approach recommendation models. Deep learning could achieve high performance of prediction and provide efficient and personalized decision support tools for PRTs surgical approach. Not applicable.

Automated Body Composition Analysis Using DAFS Express on 2D MRI Slices at L3 Vertebral Level.

Akella V, Bagherinasab R, Lee H, Li JM, Nguyen L, Salehin M, Chow VTY, Popuri K, Beg MF

pubmed logopapersMay 27 2025
Body composition analysis is vital in assessing health conditions such as obesity, sarcopenia, and metabolic syndromes. MRI provides detailed images of skeletal muscle (SM), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT), but their manual segmentation is labor-intensive and limits clinical applicability. This study validates an automated tool for MRI-based 2D body composition analysis (Data Analysis Facilitation Suite (DAFS) Express), comparing its automated measurements with expert manual segmentations using UK Biobank data. A cohort of 399 participants from the UK Biobank dataset was selected, yielding 423 single L3 slices for analysis. DAFS Express performed automated segmentations of SM, VAT, and SAT, which were then manually corrected by expert raters for validation. Evaluation metrics included Jaccard coefficients, Dice scores, intraclass correlation coefficients (ICCs), and Bland-Altman Plots to assess segmentation agreement and reliability. High agreements were observed between automated and manual segmentations with mean Jaccard scores: SM 99.03%, VAT 95.25%, and SAT 99.57%, and mean Dice scores: SM 99.51%, VAT 97.41%, and SAT 99.78%. Cross-sectional area comparisons showed consistent measurements, with automated methods closely matching manual measurements for SM and SAT, and slightly higher values for VAT (SM: auto 132.51 cm<sup>2</sup>, manual 132.36 cm<sup>2</sup>; VAT: auto 137.07 cm<sup>2</sup>, manual 134.46 cm<sup>2</sup>; SAT: auto 203.39 cm<sup>2</sup>, manual 202.85 cm<sup>2</sup>). ICCs confirmed strong reliability (SM 0.998, VAT 0.994, SAT 0.994). Bland-Altman plots revealed minimal biases, and boxplots illustrated distribution similarities across SM, VAT, and SAT areas. On average, DAFS Express took 18 s per DICOM for a total of 126.9 min for 423 images to output segmentations and measurement PDF's per DICOM. Automated segmentation of SM, VAT, and SAT from 2D MRI images using DAFS Express showed comparable accuracy to manual segmentation. This underscores its potential to streamline image analysis processes in research and clinical settings, enhancing diagnostic accuracy and efficiency. Future work should focus on further validation across diverse clinical applications and imaging conditions.
Page 132 of 1521519 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.