Dual-energy CT combined with histogram parameters in the assessment of perineural invasion in colorectal cancer.
Authors
Affiliations (3)
Affiliations (3)
- Department of Radiology, Qinghai University Affiliated Hospital, Xining, China.
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, China.
- Department of Radiology, Qinghai University Affiliated Hospital, Xining, China. [email protected].
Abstract
The purpose is to evaluate the predictive value of dual-energy CT (DECT) combined with histogram parameters and a clinical prediction model for perineural invasion (PNI) in colorectal cancer (CRC). We retrospectively analyzed clinical and imaging data from 173 CRC patients who underwent preoperative DECT-enhanced scanning at two centers. Data from Qinghai University Affiliated Hospital (n = 120) were randomly divided into training and validation sets, while data from Lanzhou University Second Hospital (n = 53) served as the external validation set. Regions of interest (ROIs) were delineated to extract spectral and histogram parameters, and multivariate logistic regression identified optimal predictors. Six machine learning models-support vector machine (SVM), decision tree (DT), random forest (RF), logistic regression (LR), k-nearest neighbors (KNN), and extreme gradient boosting (XGBoost)-were constructed. Model performance and clinical utility were assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Four independent predictive factors were identified through multivariate analysis: entropy, CT40<sub>KeV</sub>, CEA, and skewness. Among the six classifier models, RF model demonstrated the best performance in the training set (AUC = 0.918, 95% CI: 0.862-0.969). In the validation set, RF outperformed other models (AUC = 0.885, 95% CI: 0.772-0.972). Notably, in the external validation set, the XGBoost model achieved the highest performance (AUC = 0.823, 95% CI: 0.672-0.945). Dual-energy CT-based combined with histogram parameters and clinical prediction modeling can be effectively used for preoperative noninvasive assessment of perineural invasion in colorectal cancer.