Sort by:
Page 125 of 1601600 results

Artificial intelligence-guided distal radius fracture detection on plain radiographs in comparison with human raters.

Ramadanov N, John P, Hable R, Schreyer AG, Shabo S, Prill R, Salzmann M

pubmed logopapersMay 16 2025
The aim of this study was to compare the performance of artificial intelligence (AI) in detecting distal radius fractures (DRFs) on plain radiographs with the performance of human raters. We retrospectively analysed all wrist radiographs taken in our hospital since the introduction of AI-guided fracture detection from 11 September 2023 to 10 September 2024. The ground truth was defined by the radiological report of a board-certified radiologist based solely on conventional radiographs. The following parameters were calculated: True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN), accuracy (%), Cohen's Kappa coefficient, F1 score, sensitivity (%), specificity (%), Youden Index (J Statistic). In total 1145 plain radiographs of the wrist were taken between 11 September 2023 and 10 September 2024. The mean age of the included patients was 46.6 years (± 27.3), ranging from 2 to 99 years and 59.0% were female. According to the ground truth, of the 556 anteroposterior (AP) radiographs, 225 cases (40.5%) had a DRF, and of the 589 lateral view radiographs, 240 cases (40.7%) had a DRF. The AI system showed the following results on AP radiographs: accuracy (%): 95.90; Cohen's Kappa: 0.913; F1 score: 0.947; sensitivity (%): 92.02; specificity (%): 98.45; Youden Index: 90.47. The orthopedic surgeon achieved a sensitivity of 91.5%, specificity of 97.8%, an overall accuracy of 95.1%, F1 score of 0.943, and Cohen's kappa of 0.901. These results were comparable to those of the AI model. AI-guided detection of DRF demonstrated diagnostic performance nearly identical to that of an experienced orthopedic surgeon across all key metrics. The marginal differences observed in sensitivity and specificity suggest that AI can reliably support clinical fracture assessment based solely on conventional radiographs.

UGoDIT: Unsupervised Group Deep Image Prior Via Transferable Weights

Shijun Liang, Ismail R. Alkhouri, Siddhant Gautam, Qing Qu, Saiprasad Ravishankar

arxiv logopreprintMay 16 2025
Recent advances in data-centric deep generative models have led to significant progress in solving inverse imaging problems. However, these models (e.g., diffusion models (DMs)) typically require large amounts of fully sampled (clean) training data, which is often impractical in medical and scientific settings such as dynamic imaging. On the other hand, training-data-free approaches like the Deep Image Prior (DIP) do not require clean ground-truth images but suffer from noise overfitting and can be computationally expensive as the network parameters need to be optimized for each measurement set independently. Moreover, DIP-based methods often overlook the potential of learning a prior using a small number of sub-sampled measurements (or degraded images) available during training. In this paper, we propose UGoDIT, an Unsupervised Group DIP via Transferable weights, designed for the low-data regime where only a very small number, M, of sub-sampled measurement vectors are available during training. Our method learns a set of transferable weights by optimizing a shared encoder and M disentangled decoders. At test time, we reconstruct the unseen degraded image using a DIP network, where part of the parameters are fixed to the learned weights, while the remaining are optimized to enforce measurement consistency. We evaluate UGoDIT on both medical (multi-coil MRI) and natural (super resolution and non-linear deblurring) image recovery tasks under various settings. Compared to recent standalone DIP methods, UGoDIT provides accelerated convergence and notable improvement in reconstruction quality. Furthermore, our method achieves performance competitive with SOTA DM-based and supervised approaches, despite not requiring large amounts of clean training data.

Diff-Unfolding: A Model-Based Score Learning Framework for Inverse Problems

Yuanhao Wang, Shirin Shoushtari, Ulugbek S. Kamilov

arxiv logopreprintMay 16 2025
Diffusion models are extensively used for modeling image priors for inverse problems. We introduce \emph{Diff-Unfolding}, a principled framework for learning posterior score functions of \emph{conditional diffusion models} by explicitly incorporating the physical measurement operator into a modular network architecture. Diff-Unfolding formulates posterior score learning as the training of an unrolled optimization scheme, where the measurement model is decoupled from the learned image prior. This design allows our method to generalize across inverse problems at inference time by simply replacing the forward operator without retraining. We theoretically justify our unrolling approach by showing that the posterior score can be derived from a composite model-based optimization formulation. Extensive experiments on image restoration and accelerated MRI show that Diff-Unfolding achieves state-of-the-art performance, improving PSNR by up to 2 dB and reducing LPIPS by $22.7\%$, while being both compact (47M parameters) and efficient (0.72 seconds per $256 \times 256$ image). An optimized C++/LibTorch implementation further reduces inference time to 0.63 seconds, underscoring the practicality of our approach.

Patient-Specific Dynamic Digital-Physical Twin for Coronary Intervention Training: An Integrated Mixed Reality Approach

Shuo Wang, Tong Ren, Nan Cheng, Rong Wang, Li Zhang

arxiv logopreprintMay 16 2025
Background and Objective: Precise preoperative planning and effective physician training for coronary interventions are increasingly important. Despite advances in medical imaging technologies, transforming static or limited dynamic imaging data into comprehensive dynamic cardiac models remains challenging. Existing training systems lack accurate simulation of cardiac physiological dynamics. This study develops a comprehensive dynamic cardiac model research framework based on 4D-CTA, integrating digital twin technology, computer vision, and physical model manufacturing to provide precise, personalized tools for interventional cardiology. Methods: Using 4D-CTA data from a 60-year-old female with three-vessel coronary stenosis, we segmented cardiac chambers and coronary arteries, constructed dynamic models, and implemented skeletal skinning weight computation to simulate vessel deformation across 20 cardiac phases. Transparent vascular physical models were manufactured using medical-grade silicone. We developed cardiac output analysis and virtual angiography systems, implemented guidewire 3D reconstruction using binocular stereo vision, and evaluated the system through angiography validation and CABG training applications. Results: Morphological consistency between virtual and real angiography reached 80.9%. Dice similarity coefficients for guidewire motion ranged from 0.741-0.812, with mean trajectory errors below 1.1 mm. The transparent model demonstrated advantages in CABG training, allowing direct visualization while simulating beating heart challenges. Conclusion: Our patient-specific digital-physical twin approach effectively reproduces both anatomical structures and dynamic characteristics of coronary vasculature, offering a dynamic environment with visual and tactile feedback valuable for education and clinical planning.

Pretrained hybrid transformer for generalizable cardiac substructures segmentation from contrast and non-contrast CTs in lung and breast cancers

Aneesh Rangnekar, Nikhil Mankuzhy, Jonas Willmann, Chloe Choi, Abraham Wu, Maria Thor, Andreas Rimner, Harini Veeraraghavan

arxiv logopreprintMay 16 2025
AI automated segmentations for radiation treatment planning (RTP) can deteriorate when applied in clinical cases with different characteristics than training dataset. Hence, we refined a pretrained transformer into a hybrid transformer convolutional network (HTN) to segment cardiac substructures lung and breast cancer patients acquired with varying imaging contrasts and patient scan positions. Cohort I, consisting of 56 contrast-enhanced (CECT) and 124 non-contrast CT (NCCT) scans from patients with non-small cell lung cancers acquired in supine position, was used to create oracle with all 180 training cases and balanced (CECT: 32, NCCT: 32 training) HTN models. Models were evaluated on a held-out validation set of 60 cohort I patients and 66 patients with breast cancer from cohort II acquired in supine (n=45) and prone (n=21) positions. Accuracy was measured using DSC, HD95, and dose metrics. Publicly available TotalSegmentator served as the benchmark. The oracle and balanced models were similarly accurate (DSC Cohort I: 0.80 \pm 0.10 versus 0.81 \pm 0.10; Cohort II: 0.77 \pm 0.13 versus 0.80 \pm 0.12), outperforming TotalSegmentator. The balanced model, using half the training cases as oracle, produced similar dose metrics as manual delineations for all cardiac substructures. This model was robust to CT contrast in 6 out of 8 substructures and patient scan position variations in 5 out of 8 substructures and showed low correlations of accuracy to patient size and age. A HTN demonstrated robustly accurate (geometric and dose metrics) cardiac substructures segmentation from CTs with varying imaging and patient characteristics, one key requirement for clinical use. Moreover, the model combining pretraining with balanced distribution of NCCT and CECT scans was able to provide reliably accurate segmentations under varied conditions with far fewer labeled datasets compared to an oracle model.

A CVAE-based generative model for generalized B<sub>1</sub> inhomogeneity corrected chemical exchange saturation transfer MRI at 5 T.

Zhang R, Zhang Q, Wu Y

pubmed logopapersMay 15 2025
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as a powerful tool to image endogenous or exogenous macromolecules. CEST contrast highly depends on radiofrequency irradiation B<sub>1</sub> level. Spatial inhomogeneity of B<sub>1</sub> field would bias CEST measurement. Conventional interpolation-based B<sub>1</sub> correction method required CEST dataset acquisition under multiple B<sub>1</sub> levels, substantially prolonging scan time. The recently proposed supervised deep learning approach reconstructed B<sub>1</sub> inhomogeneity corrected CEST effect at the identical B<sub>1</sub> as of the training data, hindering its generalization to other B<sub>1</sub> levels. In this study, we proposed a Conditional Variational Autoencoder (CVAE)-based generative model to generate B<sub>1</sub> inhomogeneity corrected Z spectra from single CEST acquisition. The model was trained from pixel-wise source-target paired Z spectra under multiple B<sub>1</sub> with target B<sub>1</sub> as a conditional variable. Numerical simulation and healthy human brain imaging at 5 T were respectively performed to evaluate the performance of proposed model in B<sub>1</sub> inhomogeneity corrected CEST MRI. Results showed that the generated B<sub>1</sub>-corrected Z spectra agreed well with the reference averaged from regions with subtle B<sub>1</sub> inhomogeneity. Moreover, the performance of the proposed model in correcting B<sub>1</sub> inhomogeneity in APT CEST effect, as measured by both MTR<sub>asym</sub> and [Formula: see text] at 3.5 ppm, were superior over conventional Z/contrast-B<sub>1</sub>-interpolation and other deep learning methods, especially when target B<sub>1</sub> were not included in sampling or training dataset. In summary, the proposed model allows generalized B<sub>1</sub> inhomogeneity correction, benefiting quantitative CEST MRI in clinical routines.

Joint resting state and structural networks characterize pediatric bipolar patients compared to healthy controls: a multimodal fusion approach.

Yi X, Ma M, Wang X, Zhang J, Wu F, Huang H, Xiao Q, Xie A, Liu P, Grecucci A

pubmed logopapersMay 15 2025
Pediatric bipolar disorder (PBD) is a highly debilitating condition, characterized by alternating episodes of mania and depression, with intervening periods of remission. Limited information is available about the functional and structural abnormalities in PBD, particularly when comparing type I with type II subtypes. Resting-state brain activity and structural grey matter, assessed through MRI, may provide insight into the neurobiological biomarkers of this disorder. In this study, Resting state Regional Homogeneity (ReHo) and grey matter concentration (GMC) data of 58 PBD patients, and 21 healthy controls matched for age, gender, education and IQ, were analyzed in a data fusion unsupervised machine learning approach known as transposed Independent Vector Analysis. Two networks significantly differed between BPD and HC. The first network included fronto- medial regions, such as the medial and superior frontal gyrus, the cingulate, and displayed higher ReHo and GMC values in PBD compared to HC. The second network included temporo-posterior regions, as well as the insula, the caudate and the precuneus and displayed lower ReHo and GMC values in PBD compared to HC. Additionally, two networks differ between type-I vs type-II in PBD: an occipito-cerebellar network with increased ReHo and GMC in type-I compared to type-II, and a fronto-parietal network with decreased ReHo and GMC in type-I compared to type-II. Of note, the first network positively correlated with depression scores. These findings shed new light on the functional and structural abnormalities displayed by pediatric bipolar patients.

Measuring the severity of knee osteoarthritis with an aberration-free fast line scanning Raman imaging system.

Jiao C, Ye J, Liao J, Li J, Liang J, He S

pubmed logopapersMay 15 2025
Osteoarthritis (OA) is a major cause of disability worldwide, with symptoms like joint pain, limited functionality, and decreased quality of life, potentially leading to deformity and irreversible damage. Chemical changes in joint tissues precede imaging alterations, making early diagnosis challenging for conventional methods like X-rays. Although Raman imaging provides detailed chemical information, it is time-consuming. This paper aims to achieve rapid osteoarthritis diagnosis and grading using a self-developed Raman imaging system combined with deep learning denoising and acceleration algorithms. Our self-developed aberration-corrected line-scanning confocal Raman imaging device acquires a line of Raman spectra (hundreds of points) per scan using a galvanometer or displacement stage, achieving spatial and spectral resolutions of 2 μm and 0.2 nm, respectively. Deep learning algorithms enhance the imaging speed by over 4 times through effective spectrum denoising and signal-to-noise ratio (SNR) improvement. By leveraging the denoising capabilities of deep learning, we are able to acquire high-quality Raman spectral data with a reduced integration time, thereby accelerating the imaging process. Experiments on the tibial plateau of osteoarthritis patients compared three excitation wavelengths (532, 671, and 785 nm), with 671 nm chosen for optimal SNR and minimal fluorescence. Machine learning algorithms achieved a 98 % accuracy in distinguishing articular from calcified cartilage and a 97 % accuracy in differentiating osteoarthritis grades I to IV. Our fast Raman imaging system, combining an aberration-corrected line-scanning confocal Raman imager with deep learning denoising, offers improved imaging speed and enhanced spectral and spatial resolutions. It enables rapid, label-free detection of osteoarthritis severity and can identify early compositional changes before clinical imaging, allowing precise grading and tailored treatment, thus advancing orthopedic diagnostics and improving patient outcomes.

Metal Suppression Magnetic Resonance Imaging Techniques in Orthopaedic and Spine Surgery.

Ziegeler K, Yoon D, Hoff M, Theologis AA

pubmed logopapersMay 15 2025
Implantation of metallic instrumentation is the mainstay of a variety of orthopaedic and spine surgeries. Postoperatively, imaging of the soft tissues around these implants is commonly required to assess for persistent, recurrent, and/or new pathology (ie, instrumentation loosening, particle disease, infection, neural compression); visualization of these pathologies often requires the superior soft-tissue contrast of magnetic resonance imaging (MRI). As susceptibility artifacts from ferromagnetic implants can result in unacceptable image quality, unique MRI approaches are often necessary to provide accurate imaging. In this text, a comprehensive review is provided on common artifacts encountered in orthopaedic MRI, including comparisons of artifacts from different metallic alloys and common nonpropriety/propriety MR metallic artifact reduction methods. The newest metal-artifact suppression imaging technology and future directions (ie, deep learning/artificial intelligence) in this important field will be considered.

Texture-based probability mapping for automatic assessment of myocardial injury in late gadolinium enhancement images after revascularized STEMI.

Frøysa V, Berg GJ, Singsaas E, Eftestøl T, Woie L, Ørn S

pubmed logopapersMay 15 2025
Late Gadolinium-enhancement in cardiac magnetic resonance imaging (LGE-CMR) is the gold standard for assessing myocardial infarction (MI) size. Texture-based probability mapping (TPM) is a novel machine learning-based analysis of LGE images of myocardial injury. The ability of TPM to assess acute myocardial injury has not been determined. This proof-of-concept study aimed to determine how TPM responds to the dynamic changes in myocardial injury during one-year follow-up after a first-time revascularized acute MI. 41 patients with first-time acute ST-elevation MI and single-vessel occlusion underwent successful PCI. LGE-CMR images were obtained 2 days, 1 week, 2 months, and 1 year following MI. TPM size was compared with manual LGE-CMR based MI size, LV remodeling, and biomarkers. TPM size remained larger than MI by LGE-CMR at all time points, decreasing from 2 days to 2 months (p < 0.001) but increasing from 2 months to 1 year (p < 0.01). TPM correlated strongly with peak Troponin T (p < 0.001) and NT-proBNP (p < 0.001). At 1 week, 2 months, and 1 year, TPM showed a stronger correlation with NT-proBNP than MI size by LGE-CMR. Analyzing all collected pixels from 2 months to 1 year revealed a general increase in pixel scar probability in both the infarcted and non-infarcted regions. This proof-of-concept study suggests that TPM may offer additional insights into myocardial alterations in both infarcted and non-infarcted regions following acute MI. These findings indicate a potential role for TPM in assessing the overall myocardial response to infarction and the subsequent healing and remodeling process.
Page 125 of 1601600 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.