Harnessing deep learning to optimize induction chemotherapy choices in nasopharyngeal carcinoma.
Chen ZH, Han X, Lin L, Lin GY, Li B, Kou J, Wu CF, Ai XL, Zhou GQ, Gao MY, Lu LJ, Sun Y
Currently, there is no guidance for personalized choice of induction chemotherapy (IC) regimens (TPF, docetaxel + cisplatin + 5-Fu; or GP, gemcitabine + cisplatin) for locoregionally advanced nasopharyngeal carcinoma (LA-NPC). This study aimed to develop deep learning models for IC response prediction in LA-NPC. For 1438 LA-NPC patients, pretreatment magnetic resonance imaging (MRI) scans and complete biological response (cBR) information after 3 cycles of IC were collected from two centers. All models were trained in 969 patients (TPF: 548, GP: 421), and internally validated in 243 patients (TPF: 138, GP: 105), then tested on an internal dataset of 226 patients (TPF: 125, GP: 101). MRI models for the TPF and GP cohorts were constructed to predict cBR from MRI using radiomics and graph convolutional network (GCN). The MRI-Clinical models were built based on both MRI and clinical parameters. The MRI models and MRI-Clinical models achieved high discriminative accuracy in both TPF cohorts (MRI model: AUC, 0.835; MRI-Clinical model: AUC, 0.838) and GP cohorts (MRI model: AUC, 0.764; MRI-Clinical model: AUC, 0.777). The MRI-Clinical models also showed good performance in the risk stratification. The survival curve revealed that the 3-year disease-free survival of the high-sensitivity group was better than that of the low-sensitivity group in both the TPF and GP cohorts. An online tool guiding personalized choice of IC regimen was developed based on MRI-Clinical models. Our radiomics and GCN-based IC response prediction tool has robust predictive performance and may provide guidance for personalized treatment.