Sort by:
Page 123 of 4003995 results

Harnessing deep learning to optimize induction chemotherapy choices in nasopharyngeal carcinoma.

Chen ZH, Han X, Lin L, Lin GY, Li B, Kou J, Wu CF, Ai XL, Zhou GQ, Gao MY, Lu LJ, Sun Y

pubmed logopapersJul 28 2025
Currently, there is no guidance for personalized choice of induction chemotherapy (IC) regimens (TPF, docetaxel + cisplatin + 5-Fu; or GP, gemcitabine + cisplatin) for locoregionally advanced nasopharyngeal carcinoma (LA-NPC). This study aimed to develop deep learning models for IC response prediction in LA-NPC. For 1438 LA-NPC patients, pretreatment magnetic resonance imaging (MRI) scans and complete biological response (cBR) information after 3 cycles of IC were collected from two centers. All models were trained in 969 patients (TPF: 548, GP: 421), and internally validated in 243 patients (TPF: 138, GP: 105), then tested on an internal dataset of 226 patients (TPF: 125, GP: 101). MRI models for the TPF and GP cohorts were constructed to predict cBR from MRI using radiomics and graph convolutional network (GCN). The MRI-Clinical models were built based on both MRI and clinical parameters. The MRI models and MRI-Clinical models achieved high discriminative accuracy in both TPF cohorts (MRI model: AUC, 0.835; MRI-Clinical model: AUC, 0.838) and GP cohorts (MRI model: AUC, 0.764; MRI-Clinical model: AUC, 0.777). The MRI-Clinical models also showed good performance in the risk stratification. The survival curve revealed that the 3-year disease-free survival of the high-sensitivity group was better than that of the low-sensitivity group in both the TPF and GP cohorts. An online tool guiding personalized choice of IC regimen was developed based on MRI-Clinical models. Our radiomics and GCN-based IC response prediction tool has robust predictive performance and may provide guidance for personalized treatment.

Dosimetric evaluation of synthetic kilo-voltage CT images generated from megavoltage CT for head and neck tomotherapy using a conditional GAN network.

Choghazardi Y, Tavakoli MB, Abedi I, Roayaei M, Hemati S, Shanei A

pubmed logopapersJul 28 2025
The lower image contrast of megavoltage computed tomography (MVCT), which corresponds to kilovoltage computed tomography (kVCT), can inhibit accurate dosimetric assessments. This study proposes a deep learning approach, specifically the pix2pix network, to generate high-quality synthetic kVCT (skVCT) images from MVCT data. The model was trained on a dataset of 25 paired patient images and evaluated on a test set of 15 paired images. We performed visual inspections to assess the quality of the generated skVCT images and calculated the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Dosimetric equivalence was evaluated by comparing the gamma pass rates of treatment plans derived from skVCT and kVCT images. Results showed that skVCT images exhibited significantly higher quality than MVCT images, with PSNR and SSIM values of 31.9 ± 1.1 dB and 94.8% ± 1.3%, respectively, compared to 26.8 ± 1.7 dB and 89.5% ± 1.5% for MVCT-to-kVCT comparisons. Furthermore, treatment plans based on skVCT images achieved excellent gamma pass rates of 99.78 ± 0.14% and 99.82 ± 0.20% for 2 mm/2% and 3 mm/3% criteria, respectively, comparable to those obtained from kVCT-based plans (99.70 ± 0.31% and 99.79 ± 1.32%). This study demonstrates the potential of pix2pix models for generating high-quality skVCT images, which could significantly enhance Adaptive Radiation Therapy (ART).

Enhancing Synthetic Pelvic CT Generation from CBCT using Vision Transformer with Adaptive Fourier Neural Operators.

Bhaskara R, Oderinde OM

pubmed logopapersJul 28 2025
This study introduces a novel approach to improve Cone Beam CT (CBCT) image quality by developing a synthetic CT (sCT) generation method using CycleGAN with a Vision Transformer (ViT) and an Adaptive Fourier Neural Operator (AFNO). 

Approach: A dataset of 20 prostate cancer patients who received stereotactic body radiation therapy (SBRT) was used, consisting of paired CBCT and planning CT (pCT) images. The dataset was preprocessed by registering pCTs to CBCTs using deformation registration techniques, such as B-spline, followed by resampling to uniform voxel sizes and normalization. The model architecture integrates a CycleGAN with bidirectional generators, where the UNet generator is enhanced with a ViT at the bottleneck. AFNO functions as the attention mechanism for the ViT, operating on the input data in the Fourier domain. AFNO's innovations handle varying resolutions, mesh invariance, and efficient long-range dependency capture.

Main Results: Our model improved significantly in preserving anatomical details and capturing complex image dependencies. The AFNO mechanism processed global image information effectively, adapting to interpatient variations for accurate sCT generation. Evaluation metrics like Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Normalized Cross Correlation (NCC), demonstrated the superiority of our method. Specifically, the model achieved an MAE of 9.71, PSNR of 37.08 dB, SSIM of 0.97, and NCC of 0.99, confirming its efficacy. 

Significance: The integration of AFNO within the CycleGAN UNet framework addresses Cone Beam CT image quality limitations. The model generates synthetic CTs that allow adaptive treatment planning during SBRT, enabling adjustments to the dose based on tumor response, thus reducing radiotoxicity from increased doses. This method's ability to preserve both global and local anatomical features shows potential for improving tumor targeting, adaptive radiotherapy planning, and clinical decision-making.

Constructing a predictive model for children with autism spectrum disorder based on whole brain magnetic resonance radiomics: a machine learning study.

Chen X, Peng J, Zhang Z, Song Q, Li D, Zhai G, Fu W, Shu Z

pubmed logopapersJul 28 2025
Autism spectrum disorder (ASD) diagnosis remains challenging and could benefit from objective imaging-based approaches. This study aimed to construct a prediction model using whole-brain imaging radiomics and machine learning to identify children with ASD. We analyzed 223 subjects (120 with ASD) from the ABIDE database, randomly divided into training and test sets (7:3 ratio), and an independent external test set of 87 participants from Georgetown University and University of Miami. Radiomics features were extracted from white matter, gray matter, and cerebrospinal fluid from whole-brain MR images. After feature dimensionality reduction, we screened clinical predictors using multivariate logistic regression and combined them with radiomics signatures to build machine learning models. Model performance was evaluated using ROC curves and by stratifying subjects into risk subgroups. Radiomics markers achieved AUCs of 0.78, 0.75, and 0.74 in training, test, and external test sets, respectively. Verbal intelligence quotient(VIQ) emerged as a significant ASD predictor. The decision tree algorithm with radiomics markers performed best, with AUCs of 0.87, 0.84, and 0.83; sensitivities of 0.89, 0.84, and 0.86; and specificities of 0.70, 0.63, and 0.66 in the three datasets, respectively. Risk stratification using a cut-off value of 0.4285 showed significant differences in ASD prevalence between subgroups across all datasets (training: χ<sup>2</sup>=21.325; test: χ<sup>2</sup>=5.379; external test: χ<sup>2</sup>=21.52m, P<0.05). A radiomics signature based on whole-brain MRI features can effectively identify ASD, with performance enhanced by incorporating VIQ data and using a decision tree algorithm, providing a potential adaptive strategy for clinical practice. ASD = Autism Spectrum Disorder; MRI = Magnetic Resonance Imaging; SVM = support vector machine; KNN = K-nearest neighbor; VIQ = Verbal intelligence quotient; FIQ = Full-Scale intelligence quotient; ROC = Receiver Operating Characteristic; AUC = Area under Curve.

Harnessing infrared thermography and multi-convolutional neural networks for early breast cancer detection.

Attallah O

pubmed logopapersJul 28 2025
Breast cancer is a relatively common carcinoma among women worldwide and remains a considerable public health concern. Consequently, the prompt identification of cancer is crucial, as research indicates that 96% of cancers are treatable if diagnosed prior to metastasis. Despite being considered the gold standard for breast cancer evaluation, conventional mammography possesses inherent drawbacks, including accessibility issues, especially in rural regions, and discomfort associated with the procedure. Therefore, there has been a surge in interest in non-invasive, radiation-free alternative diagnostic techniques, such as thermal imaging (thermography). Thermography employs infrared thermal sensors to capture and assess temperature maps of human breasts for the identification of potential tumours based on areas of thermal irregularity. This study proposes an advanced computer-aided diagnosis (CAD) system called Thermo-CAD to assess early breast cancer detection using thermal imaging, aimed at assisting radiologists. The CAD system employs a variety of deep learning techniques, specifically incorporating multiple convolutional neural networks (CNNs) to enhance diagnostic accuracy and reliability. To effectively integrate multiple deep features and diminish the dimensionality of features derived from each CNN, feature transformation and selection methods, including non-negative matrix factorization and Relief-F, are used leading to a reduction in classification complexity. The Thermo-CAD system is assessed utilising two datasets: the DMR-IR (Database for Mastology Research Infrared Images), for distinguishing between normal and abnormal breast tissues, and a novel thermography dataset to distinguish abnormal instances as benign or malignant. Thermo-CAD has proven to be an outstanding CAD system for thermographic breast cancer detection, attaining 100% accuracy on the DMR-IR dataset (normal versus abnormal breast cancer) using CSVM and MGSVM classifiers, and lower accuracy using LSVM and QSVM classifiers. However, it showed a lower ability to distinguish benign from malignant cases (second dataset), achieving an accuracy of 79.3% using CSVM. Yet, it remains a promising tool for early-stage cancer detection, especially in resource-constrained environments.

A new low-rank adaptation method for brain structure and metastasis segmentation via decoupled principal weight direction and magnitude.

Zhu H, Yang H, Wang Y, Hu K, He G, Zhou J, Li Z

pubmed logopapersJul 28 2025
Deep learning techniques have become pivotal in medical image segmentation, but their success often relies on large, manually annotated datasets, which are expensive and labor-intensive to obtain. Additionally, different segmentation tasks frequently require retraining models from scratch, resulting in substantial computational costs. To address these limitations, we propose PDoRA, an innovative parameter-efficient fine-tuning method that leverages knowledge transfer from a pre-trained SwinUNETR model for a wide range of brain image segmentation tasks. PDoRA minimizes the reliance on extensive data annotation and computational resources by decomposing model weights into principal and residual weights. The principal weights are further divided into magnitude and direction, enabling independent fine-tuning to enhance the model's ability to capture task-specific features. The residual weights remain fixed and are later fused with the updated principal weights, ensuring model stability while enhancing performance. We evaluated PDoRA on three diverse medical image datasets for brain structure and metastasis segmentation. The results demonstrate that PDoRA consistently outperforms existing parameter-efficient fine-tuning methods, achieving superior segmentation accuracy and efficiency. Our code is available at https://github.com/Perfect199001/PDoRA/tree/main .

CVT-HNet: a fusion model for recognizing perianal fistulizing Crohn's disease based on CNN and ViT.

Li L, Wang Z, Wang C, Chen T, Deng K, Wei H, Wang D, Li J, Zhang H

pubmed logopapersJul 28 2025
Accurate identification of anal fistulas is essential, as it directly impacts the severity of subsequent perianal infections, prognostic indicators, and overall treatment outcomes. Traditional manual recognition methods are inefficient. In response, computer vision methods have been adopted to improve efficiency. Convolutional neural networks(CNNs) are the main basis for detecting anal fistulas in current computer vision techniques. However, these methods often struggle to capture long-range dependencies effectively, which results in inadequate handling of images of anal fistulas. This study proposes a new fusion model, CVT-HNet, that integrates MobileNet with vision transformer technology. This design utilizes CNNs to extract local features and Transformers to capture long-range dependencies. In addition, the MobileNetV2 with Coordinate Attention mechanism and encoder modules are optimized to improve the precision of detecting anal fistulas. Comparative experimental results show that CVT-HNet achieves an accuracy of 80.66% with significant robustness. It surpasses both pure Transformer architecture models and other fusion networks. Internal validation results demonstrate the reliability and consistency of CVT-HNet. External validation demonstrates that our model exhibits commendable transportability and generalizability. In visualization analysis, CVT-HNet exhibits a more concentrated focus on the region of interest in images of anal fistulas. Furthermore, the contribution of each CVT-HNet component module is evaluated by ablation experiments. The experimental results highlight the superior performance and practicality of CVT-HNet in detecting anal fistulas. By combining local and global information, CVT-HNet demonstrates strong performance. The model not only achieves high accuracy and robustness but also exhibits strong generalizability. This makes it suitable for real-world applications where variability in data is common.These findings emphasize its effectiveness in clinical contexts.

Machine learning-based MRI imaging for prostate cancer diagnosis: systematic review and meta-analysis.

Zhao Y, Zhang L, Zhang S, Li J, Shi K, Yao D, Li Q, Zhang T, Xu L, Geng L, Sun Y, Wan J

pubmed logopapersJul 28 2025
This study aims to evaluate the diagnostic value of machine learning-based MRI imaging in differentiating benign and malignant prostate cancer and detecting clinically significant prostate cancer (csPCa, defined as Gleason score ≥7) using systematic review and meta-analysis methods. Electronic databases (PubMed, Web of Science, Cochrane Library, and Embase) were systematically searched for predictive studies using machine learning-based MRI imaging for prostate cancer diagnosis. Sensitivity, specificity, and area under the curve (AUC) were used to assess the diagnostic accuracy of machine learning-based MRI imaging for both benign/malignant prostate cancer and csPCa. A total of 12 studies met the inclusion criteria, with 3474 patients included in the meta-analysis. Machine learning-based MRI imaging demonstrated good diagnostic value for both benign/malignant prostate cancer and csPCa. The pooled sensitivity and specificity for diagnosing benign/malignant prostate cancer were 0.92 (95% CI: 0.83-0.97) and 0.90 (95% CI: 0.68-0.97), respectively, with a combined AUC of 0.96 (95% CI: 0.94-0.98). For csPCa diagnosis, the pooled sensitivity and specificity were 0.83 (95% CI: 0.77-0.87) and 0.73 (95% CI: 0.65-0.81), respectively, with a combined AUC of 0.86 (95% CI: 0.83-0.89). Machine learning-based MRI imaging shows good diagnostic accuracy for both benign/malignant prostate cancer and csPCa. Further in-depth studies are needed to validate these findings.

Prediction of 1p/19q state in glioma by integrated deep learning method based on MRI radiomics.

Li F, Li Z, Xu H, Kong G, Zhang Z, Cheng K, Gu L, Hua L

pubmed logopapersJul 28 2025
To predict the 1p/19q molecular status of Lower-grade glioma (LGG) patients nondestructively, this study developed a deep learning (DL) approach using radiomic to provide a potential decision aid for clinical determination of molecular stratification of LGG. The study retrospectively collected images and clinical data of 218 patients diagnosed with LGG between July 2018 and July 2022, including 155 cases from The Cancer Imaging Archive (TCIA) database and 63 cases from a regional medical centre. Patients' clinical data and MRI images were collected, including contrast-enhanced T1-weighted images and T2-weighted images. After pre-processing the image data, tumour regions of interest (ROI) were segmented by two senior neurosurgeons. In this study, an Ensemble Convolutional Neural Network (ECNN) was proposed to predict the 1p/19q status. This method, consisting of Variational Autoencoder (VAE), Information Gain (IG) and Convolutional Neural Network (CNN), is compared with four machine learning algorithms (Random Forest, Decision Tree, K-Nearest Neighbour, Gaussian Neff Bayes). Fivefold cross-validation was used to evaluate and calibrate the model. Precision, recall, accuracy, F1 score and area under the curve (AUC) were calculated to assess model performance. Our cohort comprises 118 patients diagnosed with 1p/19q codeletion and 100 patients diagnosed with 1p/19q non-codeletion. The study findings indicate that the ECNN method demonstrates excellent predictive performance on the validation dataset. Our model achieved an average precision of 0.981, average recall of 0.980, average F1-score of 0.981, and average accuracy of 0.981. The average area under the curve (AUC) for our model is 0.994, surpassing that of the other four traditional machine learning algorithms (AUC: 0.523-0.702). This suggests that the model based on the ECNN algorithm performs well in distinguishing the 1p/19q molecular status of LGG patients. The deep learning model based on conventional MRI radiomic integrates VAE and IG methods. Compared with traditional machine learning algorithms, it shows the best performance in the prediction of 1p/19q molecular co-deletion status. It may become a potentially effective tool for non-invasively and effectively identifying molecular features of lower-grade glioma in the future, providing an important reference for clinicians to formulate individualized diagnosis and treatment plans.

A radiomics-based interpretable model integrating delayed-phase CT and clinical features for predicting the pathological grade of appendiceal pseudomyxoma peritonei.

Bai D, Shi G, Liang Y, Li F, Zheng Z, Wang Z

pubmed logopapersJul 28 2025
This study aimed to develop an interpretable machine learning model integrating delayed-phase contrast-enhanced CT radiomics with clinical features for noninvasive prediction of pathological grading in appendiceal pseudomyxoma peritonei (PMP), using Shapley Additive Explanations (SHAP) for model interpretation. This retrospective study analyzed 158 pathologically confirmed PMP cases (85 low-grade, 73 high-grade) from January 4, 2015 to April 30, 2024. Comprehensive clinical data including demographic characteristics, serum tumor markers (CEA, CA19-9, CA125, D-dimer, CA-724, CA-242), and CT-peritoneal cancer index (CT-PCI) were collected. Radiomics features were extracted from preoperative contrast-enhanced CT scans using standardized protocols. After rigorous feature selection and five-fold cross-validation, we developed three predictive models: clinical-only, radiomics-only, and a combined clinical-radiomics model using logistic regression. Model performance was evaluated through ROC analysis (AUC), Delong test, decision curve analysis (DCA), and Brier score, with SHAP values providing interpretability. The combined model demonstrated superior performance, achieving AUCs of 0.91 (95%CI:0.86-0.95) and 0.88 (95%CI:0.82-0.93) in training and testing sets respectively, significantly outperforming standalone models (P < 0.05). DCA confirmed greater clinical utility across most threshold probabilities, with favorable Brier scores (training:0.124; testing:0.142) indicating excellent calibration. SHAP analysis identified the top predictive features: wavelet-LHH_glcm_InverseVariance (radiomics), original_shape_Elongation (radiomics), and CA-199 (clinical). Our SHAP-interpretable combined model provides an accurate, noninvasive tool for PMP grading, facilitating personalized treatment decisions. The integration of radiomics and clinical data demonstrates superior predictive performance compared to conventional approaches, with potential to improve patient outcomes.
Page 123 of 4003995 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.