Sort by:
Page 12 of 39382 results

PatchGuard: Adversarially Robust Anomaly Detection and Localization through Vision Transformers and Pseudo Anomalies

Mojtaba Nafez, Amirhossein Koochakian, Arad Maleki, Jafar Habibi, Mohammad Hossein Rohban

arxiv logopreprintJun 10 2025
Anomaly Detection (AD) and Anomaly Localization (AL) are crucial in fields that demand high reliability, such as medical imaging and industrial monitoring. However, current AD and AL approaches are often susceptible to adversarial attacks due to limitations in training data, which typically include only normal, unlabeled samples. This study introduces PatchGuard, an adversarially robust AD and AL method that incorporates pseudo anomalies with localization masks within a Vision Transformer (ViT)-based architecture to address these vulnerabilities. We begin by examining the essential properties of pseudo anomalies, and follow it by providing theoretical insights into the attention mechanisms required to enhance the adversarial robustness of AD and AL systems. We then present our approach, which leverages Foreground-Aware Pseudo-Anomalies to overcome the deficiencies of previous anomaly-aware methods. Our method incorporates these crafted pseudo-anomaly samples into a ViT-based framework, with adversarial training guided by a novel loss function designed to improve model robustness, as supported by our theoretical analysis. Experimental results on well-established industrial and medical datasets demonstrate that PatchGuard significantly outperforms previous methods in adversarial settings, achieving performance gains of $53.2\%$ in AD and $68.5\%$ in AL, while also maintaining competitive accuracy in non-adversarial settings. The code repository is available at https://github.com/rohban-lab/PatchGuard .

Foundation Models in Medical Imaging -- A Review and Outlook

Vivien van Veldhuizen, Vanessa Botha, Chunyao Lu, Melis Erdal Cesur, Kevin Groot Lipman, Edwin D. de Jong, Hugo Horlings, Clárisa Sanchez, Cees Snoek, Ritse Mann, Eric Marcus, Jonas Teuwen

arxiv logopreprintJun 10 2025
Foundation models (FMs) are changing the way medical images are analyzed by learning from large collections of unlabeled data. Instead of relying on manually annotated examples, FMs are pre-trained to learn general-purpose visual features that can later be adapted to specific clinical tasks with little additional supervision. In this review, we examine how FMs are being developed and applied in pathology, radiology, and ophthalmology, drawing on evidence from over 150 studies. We explain the core components of FM pipelines, including model architectures, self-supervised learning methods, and strategies for downstream adaptation. We also review how FMs are being used in each imaging domain and compare design choices across applications. Finally, we discuss key challenges and open questions to guide future research.

MedMoE: Modality-Specialized Mixture of Experts for Medical Vision-Language Understanding

Shivang Chopra, Gabriela Sanchez-Rodriguez, Lingchao Mao, Andrew J Feola, Jing Li, Zsolt Kira

arxiv logopreprintJun 10 2025
Different medical imaging modalities capture diagnostic information at varying spatial resolutions, from coarse global patterns to fine-grained localized structures. However, most existing vision-language frameworks in the medical domain apply a uniform strategy for local feature extraction, overlooking the modality-specific demands. In this work, we present MedMoE, a modular and extensible vision-language processing framework that dynamically adapts visual representation based on the diagnostic context. MedMoE incorporates a Mixture-of-Experts (MoE) module conditioned on the report type, which routes multi-scale image features through specialized expert branches trained to capture modality-specific visual semantics. These experts operate over feature pyramids derived from a Swin Transformer backbone, enabling spatially adaptive attention to clinically relevant regions. This framework produces localized visual representations aligned with textual descriptions, without requiring modality-specific supervision at inference. Empirical results on diverse medical benchmarks demonstrate that MedMoE improves alignment and retrieval performance across imaging modalities, underscoring the value of modality-specialized visual representations in clinical vision-language systems.

RadGPT: A system based on a large language model that generates sets of patient-centered materials to explain radiology report information.

Herwald SE, Shah P, Johnston A, Olsen C, Delbrouck JB, Langlotz CP

pubmed logopapersJun 10 2025
The Cures Act Final Rule requires that patients have real-time access to their radiology reports, which contain technical language. Our objective to was to use a novel system called RadGPT, which integrates concept extraction and a large language model (LLM), to help patients understand their radiology reports. RadGPT generated 150 concept explanations and 390 question-and-answer pairs from 30 radiology report impressions from between 2012 and 2020. The extracted concepts were used to create concept-based explanations, as well as concept-based question-and-answer pairs where questions were generated using either a fixed template or an LLM. Additionally, report-based question-and-answer pairs were generated directly from the impression using an LLM without concept extraction. One board-certified radiologist and 4 radiology residents rated the material quality using a standardized rubric. Concept-based LLM-generated questions were significantly higher quality than concept-based template-generated questions (p < 0.001). Excluding those template-based question-and-answer pairs from further analysis, nearly all (> 95%) of RadGPT-generated materials were rated highly, with at least 50% receiving the highest possible ranking from all 5 raters. No answers or explanations were rated as likely to affect the safety or effectiveness of patient care. Report-level LLM-based questions and answers were rated particularly highly, with 92% of report-level LLM-based questions and 61% of the corresponding report-level answers receiving the highest rating from all raters. The educational tool RadGPT generated high-quality explanations and question-and-answer pairs that were personalized for each radiology report, unlikely to produce harmful explanations and likely to enhance patient understanding of radiology information.

Foundation Models in Medical Imaging -- A Review and Outlook

Vivien van Veldhuizen, Vanessa Botha, Chunyao Lu, Melis Erdal Cesur, Kevin Groot Lipman, Edwin D. de Jong, Hugo Horlings, Clárisa I. Sanchez, Cees G. M. Snoek, Lodewyk Wessels, Ritse Mann, Eric Marcus, Jonas Teuwen

arxiv logopreprintJun 10 2025
Foundation models (FMs) are changing the way medical images are analyzed by learning from large collections of unlabeled data. Instead of relying on manually annotated examples, FMs are pre-trained to learn general-purpose visual features that can later be adapted to specific clinical tasks with little additional supervision. In this review, we examine how FMs are being developed and applied in pathology, radiology, and ophthalmology, drawing on evidence from over 150 studies. We explain the core components of FM pipelines, including model architectures, self-supervised learning methods, and strategies for downstream adaptation. We also review how FMs are being used in each imaging domain and compare design choices across applications. Finally, we discuss key challenges and open questions to guide future research.

Foundation Models in Medical Imaging -- A Review and Outlook

Vivien van Veldhuizen, Vanessa Botha, Chunyao Lu, Melis Erdal Cesur, Kevin Groot Lipman, Edwin D. de Jong, Hugo Horlings, Clárisa I. Sanchez, Cees G. M. Snoek, Lodewyk Wessels, Ritse Mann, Eric Marcus, Jonas Teuwen

arxiv logopreprintJun 10 2025
Foundation models (FMs) are changing the way medical images are analyzed by learning from large collections of unlabeled data. Instead of relying on manually annotated examples, FMs are pre-trained to learn general-purpose visual features that can later be adapted to specific clinical tasks with little additional supervision. In this review, we examine how FMs are being developed and applied in pathology, radiology, and ophthalmology, drawing on evidence from over 150 studies. We explain the core components of FM pipelines, including model architectures, self-supervised learning methods, and strategies for downstream adaptation. We also review how FMs are being used in each imaging domain and compare design choices across applications. Finally, we discuss key challenges and open questions to guide future research.

Large Language Models in Medical Diagnostics: Scoping Review With Bibliometric Analysis.

Su H, Sun Y, Li R, Zhang A, Yang Y, Xiao F, Duan Z, Chen J, Hu Q, Yang T, Xu B, Zhang Q, Zhao J, Li Y, Li H

pubmed logopapersJun 9 2025
The integration of large language models (LLMs) into medical diagnostics has garnered substantial attention due to their potential to enhance diagnostic accuracy, streamline clinical workflows, and address health care disparities. However, the rapid evolution of LLM research necessitates a comprehensive synthesis of their applications, challenges, and future directions. This scoping review aimed to provide an overview of the current state of research regarding the use of LLMs in medical diagnostics. The study sought to answer four primary subquestions, as follows: (1) Which LLMs are commonly used? (2) How are LLMs assessed in diagnosis? (3) What is the current performance of LLMs in diagnosing diseases? (4) Which medical domains are investigating the application of LLMs? This scoping review was conducted according to the Joanna Briggs Institute Manual for Evidence Synthesis and adheres to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews). Relevant literature was searched from the Web of Science, PubMed, Embase, IEEE Xplore, and ACM Digital Library databases from 2022 to 2025. Articles were screened and selected based on predefined inclusion and exclusion criteria. Bibliometric analysis was performed using VOSviewer to identify major research clusters and trends. Data extraction included details on LLM types, application domains, and performance metrics. The field is rapidly expanding, with a surge in publications after 2023. GPT-4 and its variants dominated research (70/95, 74% of studies), followed by GPT-3.5 (34/95, 36%). Key applications included disease classification (text or image-based), medical question answering, and diagnostic content generation. LLMs demonstrated high accuracy in specialties like radiology, psychiatry, and neurology but exhibited biases in race, gender, and cost predictions. Ethical concerns, including privacy risks and model hallucination, alongside regulatory fragmentation, were critical barriers to clinical adoption. LLMs hold transformative potential for medical diagnostics but require rigorous validation, bias mitigation, and multimodal integration to address real-world complexities. Future research should prioritize explainable artificial intelligence frameworks, specialty-specific optimization, and international regulatory harmonization to ensure equitable and safe clinical deployment.

Curriculum check, 2025-equipping radiology residents for AI challenges of tomorrow.

Venugopal VK, Kumar A, Tan MO, Szarf G

pubmed logopapersJun 9 2025
The exponential rise in the artificial intelligence (AI) tools for medical imaging is profoundly impacting the practice of radiology. With over 1000 FDA-cleared AI algorithms now approved for clinical use-many of them designed for radiologic tasks-the responsibility lies with training institutions to ensure that radiology residents are equipped not only to use AI systems, but to critically evaluate, monitor, respond to their output in a safe, ethical manner. This review proposes a comprehensive framework to integrate AI into radiology residency curricula, targeting both essential competencies required of all residents, optional advanced skills for those interested in research or AI development. Core educational strategies include structured didactic instruction, hands-on lab exposure to commercial AI tools, case-based discussions, simulation-based clinical pathways, teaching residents how to interpret model cards, regulatory documentation. Clinical examples such as stroke triage, Urinary tract calculi detection, AI-CAD in mammography, false-positive detection are used to anchor theory in practice. The article also addresses critical domains of AI governance: model transparency, ethical dilemmas, algorithmic bias, the role of residents in human-in-the-loop oversight systems. It outlines mentorship, faculty development strategies to build institutional readiness, proposes a roadmap to future-proof radiology education. This includes exposure to foundation models, vision-language systems, multi-agent workflows, global best practices in post-deployment AI monitoring. This pragmatic framework aims to serve as a guide for residency programs adapting to the next era of radiology practice.

Developing a Deep Learning Radiomics Model Combining Lumbar CT, Multi-Sequence MRI, and Clinical Data to Predict High-Risk Adjacent Segment Degeneration Following Lumbar Fusion: A Retrospective Multicenter Study.

Zou C, Wang T, Wang B, Fei Q, Song H, Zang L

pubmed logopapersJun 9 2025
Study designRetrospective cohort study.ObjectivesDevelop and validate a model combining clinical data, deep learning radiomics (DLR), and radiomic features from lumbar CT and multisequence MRI to predict high-risk patients for adjacent segment degeneration (ASDeg) post-lumbar fusion.MethodsThis study included 305 patients undergoing preoperative CT and MRI for lumbar fusion surgery, divided into training (n = 192), internal validation (n = 83), and external test (n = 30) cohorts. Vision Transformer 3D-based deep learning model was developed. LASSO regression was used for feature selection to establish a logistic regression model. ASDeg was defined as adjacent segment degeneration during radiological follow-up 6 months post-surgery. Fourteen machine learning algorithms were evaluated using ROC curves, and a combined model integrating clinical variables was developed.ResultsAfter feature selection, 21 radiomics, 12 DLR, and 3 clinical features were selected. The linear support vector machine algorithm performed best for the radiomic model, and AdaBoost was optimal for the DLR model. A combined model using these and clinical features was developed, with the multi-layer perceptron as the most effective algorithm. The areas under the curve for training, internal validation, and external test cohorts were 0.993, 0.936, and 0.835, respectively. The combined model outperformed the combined predictions of 2 surgeons.ConclusionsThis study developed and validated a combined model integrating clinical, DLR and radiomic features, demonstrating high predictive performance for identifying high-risk ASDeg patients post-lumbar fusion based on clinical data, CT, and MRI. The model could potentially reduce ASDeg-related revision surgeries, thereby reducing the burden on the public healthcare.

Diagnostic and Technological Advances in Magnetic Resonance (Focusing on Imaging Technique and the Gadolinium-Based Contrast Media), Computed Tomography (Focusing on Photon Counting CT), and Ultrasound-State of the Art.

Runge VM, Heverhagen JT

pubmed logopapersJun 9 2025
Magnetic resonance continues to evolve and advance as a critical imaging modality for disease diagnosis and monitoring. Hardware and software advances continue to propel this modality to the forefront of the field of diagnostic imaging. Next generation MR contrast media, specifically gadolinium chelates with improved relaxivity and stability (relative to the provided contrast effect), have emerged providing a further boost to the field. Concern regarding gadolinium deposition in the body with primarily the weaker gadolinium chelates (which have been now removed from the market, at least in Europe) continues to be at the forefront of clinicians' minds. This has driven renewed interest in possible development of manganese-based contrast media. The development of photon counting CT and its clinical introduction have made possible a further major advance in CT image quality, along with the potential for decreasing radiation dose. The possibility of major clinical advances in thoracic, cardiac, and musculoskeletal imaging were first recognized, with its broader impact - across all organ systems - now also recognized. The utility of routine acquisition (without penalty in time or radiation dose) of full spectral multi-energy data is now also being recognized as an additional major advance made possible by photon counting CT. Artificial intelligence is now being used in the background across most imaging platforms and modalities, making possible further advances in imaging technique and image quality, although this field is nowhere yet near to realizing its full potential. And last, but not least, the field of ultrasound is on the cusp of further major advances in availability (with development of very low-cost systems) and a possible new generation of microbubble contrast media.
Page 12 of 39382 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.