Sort by:
Page 113 of 1161159 results

Alterations in static and dynamic functional network connectivity in chronic low back pain: a resting-state network functional connectivity and machine learning study.

Liu H, Wan X

pubmed logopapersMay 7 2025
Low back pain (LBP) is a prevalent pain condition whose persistence can lead to changes in the brain regions responsible for sensory, cognitive, attentional, and emotional processing. Previous neuroimaging studies have identified various structural and functional abnormalities in patients with LBP; however, how the static and dynamic large-scale functional network connectivity (FNC) of the brain is affected in these patients remains unclear. Forty-one patients with chronic low back pain (cLBP) and 42 healthy controls underwent resting-state functional MRI scanning. The independent component analysis method was employed to extract the resting-state networks. Subsequently, we calculate and compare between groups for static intra- and inter-network functional connectivity. In addition, we investigated the differences between dynamic functional network connectivity and dynamic temporal metrics between cLBP patients and healthy controls. Finally, we tried to distinguish cLBP patients from healthy controls by support vector machine method. The results showed that significant reductions in functional connectivity within the network were found within the DMN,DAN, and ECN in cLBP patients. Significant between-group differences were also found in static FNC and in each state of dynamic FNC. In addition, in terms of dynamic temporal metrics, fraction time and mean dwell time were significantly altered in cLBP patients. In conclusion, our study suggests the existence of static and dynamic large-scale brain network alterations in patients with cLBP. The findings provide insights into the neural mechanisms underlying various brain function abnormalities and altered pain experiences in patients with cLBP.

Convergent Complex Quasi-Newton Proximal Methods for Gradient-Driven Denoisers in Compressed Sensing MRI Reconstruction

Tao Hong, Zhaoyi Xu, Se Young Chun, Luis Hernandez-Garcia, Jeffrey A. Fessler

arxiv logopreprintMay 7 2025
In compressed sensing (CS) MRI, model-based methods are pivotal to achieving accurate reconstruction. One of the main challenges in model-based methods is finding an effective prior to describe the statistical distribution of the target image. Plug-and-Play (PnP) and REgularization by Denoising (RED) are two general frameworks that use denoisers as the prior. While PnP/RED methods with convolutional neural networks (CNNs) based denoisers outperform classical hand-crafted priors in CS MRI, their convergence theory relies on assumptions that do not hold for practical CNNs. The recently developed gradient-driven denoisers offer a framework that bridges the gap between practical performance and theoretical guarantees. However, the numerical solvers for the associated minimization problem remain slow for CS MRI reconstruction. This paper proposes a complex quasi-Newton proximal method that achieves faster convergence than existing approaches. To address the complex domain in CS MRI, we propose a modified Hessian estimation method that guarantees Hermitian positive definiteness. Furthermore, we provide a rigorous convergence analysis of the proposed method for nonconvex settings. Numerical experiments on both Cartesian and non-Cartesian sampling trajectories demonstrate the effectiveness and efficiency of our approach.

An imageless magnetic resonance framework for fast and cost-effective decision-making

Alba González-Cebrián, Pablo García-Cristóbal, Fernando Galve, Efe Ilıcak, Viktor Van Der Valk, Marius Staring, Andrew Webb, Joseba Alonso

arxiv logopreprintMay 7 2025
Magnetic Resonance Imaging (MRI) is the gold standard in countless diagnostic procedures, yet hardware complexity, long scans, and cost preclude rapid screening and point-of-care use. We introduce Imageless Magnetic Resonance Diagnosis (IMRD), a framework that bypasses k-space sampling and image reconstruction by analyzing raw one-dimensional MR signals. We identify potentially impactful embodiments where IMRD requires only optimized pulse sequences for time-domain contrast, minimal low-field hardware, and pattern recognition algorithms to answer clinical closed queries and quantify lesion burden. As a proof of concept, we simulate multiple sclerosis lesions in silico within brain phantoms and deploy two extremely fast protocols (approximately 3 s), with and without spatial information. A 1D convolutional neural network achieves AUC close to 0.95 for lesion detection and R2 close to 0.99 for volume estimation. We also perform robustness tests under reduced signal-to-noise ratio, partial signal omission, and relaxation-time variability. By reframing MR signals as direct diagnostic metrics, IMRD paves the way for fast, low-cost MR screening and monitoring in resource-limited environments.

Advancing 3D Medical Image Segmentation: Unleashing the Potential of Planarian Neural Networks in Artificial Intelligence

Ziyuan Huang, Kevin Huggins, Srikar Bellur

arxiv logopreprintMay 7 2025
Our study presents PNN-UNet as a method for constructing deep neural networks that replicate the planarian neural network (PNN) structure in the context of 3D medical image data. Planarians typically have a cerebral structure comprising two neural cords, where the cerebrum acts as a coordinator, and the neural cords serve slightly different purposes within the organism's neurological system. Accordingly, PNN-UNet comprises a Deep-UNet and a Wide-UNet as the nerve cords, with a densely connected autoencoder performing the role of the brain. This distinct architecture offers advantages over both monolithic (UNet) and modular networks (Ensemble-UNet). Our outcomes on a 3D MRI hippocampus dataset, with and without data augmentation, demonstrate that PNN-UNet outperforms the baseline UNet and several other UNet variants in image segmentation.

3D Brain MRI Classification for Alzheimer Diagnosis Using CNN with Data Augmentation

Thien Nhan Vo, Bac Nam Ho, Thanh Xuan Truong

arxiv logopreprintMay 7 2025
A three-dimensional convolutional neural network was developed to classify T1-weighted brain MRI scans as healthy or Alzheimer. The network comprises 3D convolution, pooling, batch normalization, dense ReLU layers, and a sigmoid output. Using stochastic noise injection and five-fold cross-validation, the model achieved test set accuracy of 0.912 and area under the ROC curve of 0.961, an improvement of approximately 0.027 over resizing alone. Sensitivity and specificity both exceeded 0.90. These results align with prior work reporting up to 0.10 gain via synthetic augmentation. The findings demonstrate the effectiveness of simple augmentation for 3D MRI classification and motivate future exploration of advanced augmentation methods and architectures such as 3D U-Net and vision transformers.

Artificial Intelligence based radiomic model in Craniopharyngiomas: A Systematic Review and Meta-Analysis on Diagnosis, Segmentation, and Classification.

Mohammadzadeh I, Hajikarimloo B, Niroomand B, Faizi N, Faizi N, Habibi MA, Mohammadzadeh S, Soltani R

pubmed logopapersMay 7 2025
Craniopharyngiomas (CPs) are rare, benign brain tumors originating from Rathke's pouch remnants, typically located in the sellar/parasellar region. Accurate differentiation is crucial due to varying prognoses, with ACPs having higher recurrence and worse outcomes. MRI struggles with overlapping features, complicating diagnosis. this study evaluates the role of Artificial Intelligence (AI) in diagnosing, segmenting, and classifying CPs, emphasizing its potential to improve clinical decision-making, particularly for radiologists and neurosurgeons. This systematic review and meta-analysis assess AI applications in diagnosing, segmenting, and classifying on CPs patients. a comprehensive search was conducted across PubMed, Scopus, Embase and Web of Science for studies employing AI models in patients with CP. Performance metrics such as sensitivity, specificity, accuracy, and area under the curve (AUC) were extracted and synthesized. Eleven studies involving 1916 patients were included in the analysis. The pooled results revealed a sensitivity of 0.740 (95% CI: 0.673-0.808), specificity of 0.813 (95% CI: 0.729-0.898), and accuracy of 0.746 (95% CI: 0.679-0.813). The area under the curve (AUC) for diagnosis was 0.793 (95% CI: 0.719-0.866), and for classification, it was 0.899 (95% CI: 0.846-0.951). The sensitivity for segmentation was found to be 0.755 (95% CI: 0.704-0.805). AI-based models show strong potential in enhancing the diagnostic accuracy and clinical decision-making process for CPs. These findings support the use of AI tools for more reliable preoperative assessment, leading to better treatment planning and patient outcomes. Further research with larger datasets is needed to optimize and validate AI applications in clinical practice.

The added value of artificial intelligence using Quantib Prostate for the detection of prostate cancer at multiparametric magnetic resonance imaging.

Russo T, Quarta L, Pellegrino F, Cosenza M, Camisassa E, Lavalle S, Apostolo G, Zaurito P, Scuderi S, Barletta F, Marzorati C, Stabile A, Montorsi F, De Cobelli F, Brembilla G, Gandaglia G, Briganti A

pubmed logopapersMay 7 2025
Artificial intelligence (AI) has been proposed to assist radiologists in reporting multiparametric magnetic resonance imaging (mpMRI) of the prostate. We evaluate the diagnostic performance of radiologists with different levels of experience when reporting mpMRI with the support of available AI-based software (Quantib Prostate). This is a single-center study (NCT06298305) involving 110 patients. Those with a positive mpMRI (PI-RADS ≥ 3) underwent targeted plus systematic biopsy (TBx plus SBx), while those with a negative mpMRI but a high clinical suspicion of prostate cancer (PCa) underwent SBx. Three readers with different levels of experience, identified as R1, R2, and R3 reviewed all mpMRI. Inter-reader agreement among the three readers with or without the assistance of Quantib Prostate as well as sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy for the detection of clinically significant PCa (csPCa) were assessed. 102 patients underwent prostate biopsy and the csPCa detection rate was 47%. Using Quantib Prostate resulted in an increased number of lesions identified for R3 (101 vs. 127). Inter-reader agreement slightly increased when using Quantib Prostate from 0.37 to 0.41 without vs. with Quantib Prostate, respectively. PPV, NPV and diagnostic accuracy (measured by the area under the curve [AUC]) of R3 improved (0.51 vs. 0.55, 0.65 vs.0.82 and 0.56 vs. 0.62, respectively). Conversely, no changes were observed for R1 and R2. Using Quantib Prostate did not enhance the detection rate of csPCa for readers with some experience in prostate imaging. However, for an inexperienced reader, this AI-based software is demonstrated to improve the performance. Name of registry: clinicaltrials.gov. NCT06298305. Date of registration: 2022-09.

Cross-organ all-in-one parallel compressed sensing magnetic resonance imaging

Baoshun Shi, Zheng Liu, Xin Meng, Yan Yang

arxiv logopreprintMay 7 2025
Recent advances in deep learning-based parallel compressed sensing magnetic resonance imaging (p-CSMRI) have significantly improved reconstruction quality. However, current p-CSMRI methods often require training separate deep neural network (DNN) for each organ due to anatomical variations, creating a barrier to developing generalized medical image reconstruction systems. To address this, we propose CAPNet (cross-organ all-in-one deep unfolding p-CSMRI network), a unified framework that implements a p-CSMRI iterative algorithm via three specialized modules: auxiliary variable module, prior module, and data consistency module. Recognizing that p-CSMRI systems often employ varying sampling ratios for different organs, resulting in organ-specific artifact patterns, we introduce an artifact generation submodule, which extracts and integrates artifact features into the data consistency module to enhance the discriminative capability of the overall network. For the prior module, we design an organ structure-prompt generation submodule that leverages structural features extracted from the segment anything model (SAM) to create cross-organ prompts. These prompts are strategically incorporated into the prior module through an organ structure-aware Mamba submodule. Comprehensive evaluations on a cross-organ dataset confirm that CAPNet achieves state-of-the-art reconstruction performance across multiple anatomical structures using a single unified model. Our code will be published at https://github.com/shibaoshun/CAPNet.

Interpretable MRI-Based Deep Learning for Alzheimer's Risk and Progression

Lu, B., Chen, Y.-R., Li, R.-X., Zhang, M.-K., Yan, S.-Z., Chen, G.-Q., Castellanos, F. X., Thompson, P. M., Lu, J., Han, Y., Yan, C.-G.

medrxiv logopreprintMay 7 2025
Timely intervention for Alzheimers disease (AD) requires early detection. The development of immunotherapies targeting amyloid-beta and tau underscores the need for accessible, time-efficient biomarkers for early diagnosis. Here, we directly applied our previously developed MRI-based deep learning model for AD to the large Chinese SILCODE cohort (722 participants, 1,105 brain MRI scans). The model -- initially trained on North American data -- demonstrated robust cross-ethnic generalization, without any retraining or fine-tuning, achieving an AUC of 91.3% in AD classification with a sensitivity of 95.2%. It successfully identified 86.7% of individuals at risk of AD progression more than 5 years in advance. Individuals identified as high-risk exhibited significantly shorter median progression times. By integrating an interpretable deep learning brain risk map approach, we identified AD brain subtypes, including an MCI subtype associated with rapid cognitive decline. The models risk scores showed significant correlations with cognitive measures and plasma biomarkers, such as tau proteins and neurofilament light chain (NfL). These findings underscore the exceptional generalizability and clinical utility of MRI-based deep learning models, especially in large and diverse populations, offering valuable tools for early therapeutic intervention. The model has been made open-source and deployed to a free online website for AD risk prediction, to assist in early screening and intervention.

Phenotype-Guided Generative Model for High-Fidelity Cardiac MRI Synthesis: Advancing Pretraining and Clinical Applications

Ziyu Li, Yujian Hu, Zhengyao Ding, Yiheng Mao, Haitao Li, Fan Yi, Hongkun Zhang, Zhengxing Huang

arxiv logopreprintMay 6 2025
Cardiac Magnetic Resonance (CMR) imaging is a vital non-invasive tool for diagnosing heart diseases and evaluating cardiac health. However, the limited availability of large-scale, high-quality CMR datasets poses a major challenge to the effective application of artificial intelligence (AI) in this domain. Even the amount of unlabeled data and the health status it covers are difficult to meet the needs of model pretraining, which hinders the performance of AI models on downstream tasks. In this study, we present Cardiac Phenotype-Guided CMR Generation (CPGG), a novel approach for generating diverse CMR data that covers a wide spectrum of cardiac health status. The CPGG framework consists of two stages: in the first stage, a generative model is trained using cardiac phenotypes derived from CMR data; in the second stage, a masked autoregressive diffusion model, conditioned on these phenotypes, generates high-fidelity CMR cine sequences that capture both structural and functional features of the heart in a fine-grained manner. We synthesized a massive amount of CMR to expand the pretraining data. Experimental results show that CPGG generates high-quality synthetic CMR data, significantly improving performance on various downstream tasks, including diagnosis and cardiac phenotypes prediction. These gains are demonstrated across both public and private datasets, highlighting the effectiveness of our approach. Code is availabel at https://anonymous.4open.science/r/CPGG.
Page 113 of 1161159 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.