Sort by:
Page 112 of 1161159 results

Advancement of an automatic segmentation pipeline for metallic artifact removal in post-surgical ACL MRI.

Barnes DA, Murray CJ, Molino J, Beveridge JE, Kiapour AM, Murray MM, Fleming BC

pubmed logopapersMay 8 2025
Magnetic resonance imaging (MRI) has the potential to identify post-operative risk factors for re-tearing an anterior cruciate ligament (ACL) using a combination of imaging signal intensity (SI) and cross-sectional area measurements of the healing ACL. During surgery micro-debris can result from drilling the osseous tunnels for graft and/or suture insertion. The debris presents a limitation when using post-surgical MRI to assess reinjury risk as it causes rapid magnetic field variations during acquisition, leading to signal loss within a voxel. The present study demonstrates how K-means clustering can refine an automatic segmentation algorithm to remove the lost signal intensity values induced by the artifacts in the image. MRI data were obtained from 82 patients enrolled in three prospective clinical trials of ACL surgery. Constructive Interference in Steady State MRIs were collected at 6 months post-operation. Manual segmentation of the ACL with metallic artifacts removed served as the gold standard. The accuracy of the automatic ACL segmentations was compared using Dice coefficient, sensitivity, and precision. The performance of the automatic segmentation was comparable to manual segmentation (Dice coefficient = .81, precision = .81, sensitivity = .82). The normalized average signal intensity was calculated as 1.06 (±0.25) for the automatic and 1.04 (±0.23) for the manual segmentation, yielding a difference of 2%. These metrics emphasize the automatic segmentation model's ability to precisely capture ACL signal intensity while excluding artifact regions. The automatic artifact segmentation model described here could enhance qMRI's clinical utility by allowing for more accurate and time-efficient segmentations of the ACL.

MoRe-3DGSMR: Motion-resolved reconstruction framework for free-breathing pulmonary MRI based on 3D Gaussian representation

Tengya Peng, Ruyi Zha, Qing Zou

arxiv logopreprintMay 8 2025
This study presents an unsupervised, motion-resolved reconstruction framework for high-resolution, free-breathing pulmonary magnetic resonance imaging (MRI), utilizing a three-dimensional Gaussian representation (3DGS). The proposed method leverages 3DGS to address the challenges of motion-resolved 3D isotropic pulmonary MRI reconstruction by enabling data smoothing between voxels for continuous spatial representation. Pulmonary MRI data acquisition is performed using a golden-angle radial sampling trajectory, with respiratory motion signals extracted from the center of k-space in each radial spoke. Based on the estimated motion signal, the k-space data is sorted into multiple respiratory phases. A 3DGS framework is then applied to reconstruct a reference image volume from the first motion state. Subsequently, a patient-specific convolutional neural network is trained to estimate the deformation vector fields (DVFs), which are used to generate the remaining motion states through spatial transformation of the reference volume. The proposed reconstruction pipeline is evaluated on six datasets from six subjects and bench-marked against three state-of-the-art reconstruction methods. The experimental findings demonstrate that the proposed reconstruction framework effectively reconstructs high-resolution, motion-resolved pulmonary MR images. Compared with existing approaches, it achieves superior image quality, reflected by higher signal-to-noise ratio and contrast-to-noise ratio. The proposed unsupervised 3DGS-based reconstruction method enables accurate motion-resolved pulmonary MRI with isotropic spatial resolution. Its superior performance in image quality metrics over state-of-the-art methods highlights its potential as a robust solution for clinical pulmonary MR imaging.

Improved Brain Tumor Detection in MRI: Fuzzy Sigmoid Convolution in Deep Learning

Muhammad Irfan, Anum Nawaz, Riku Klen, Abdulhamit Subasi, Tomi Westerlund, Wei Chen

arxiv logopreprintMay 8 2025
Early detection and accurate diagnosis are essential to improving patient outcomes. The use of convolutional neural networks (CNNs) for tumor detection has shown promise, but existing models often suffer from overparameterization, which limits their performance gains. In this study, fuzzy sigmoid convolution (FSC) is introduced along with two additional modules: top-of-the-funnel and middle-of-the-funnel. The proposed methodology significantly reduces the number of trainable parameters without compromising classification accuracy. A novel convolutional operator is central to this approach, effectively dilating the receptive field while preserving input data integrity. This enables efficient feature map reduction and enhances the model's tumor detection capability. In the FSC-based model, fuzzy sigmoid activation functions are incorporated within convolutional layers to improve feature extraction and classification. The inclusion of fuzzy logic into the architecture improves its adaptability and robustness. Extensive experiments on three benchmark datasets demonstrate the superior performance and efficiency of the proposed model. The FSC-based architecture achieved classification accuracies of 99.17%, 99.75%, and 99.89% on three different datasets. The model employs 100 times fewer parameters than large-scale transfer learning architectures, highlighting its computational efficiency and suitability for detecting brain tumors early. This research offers lightweight, high-performance deep-learning models for medical imaging applications.

Relevance of choroid plexus volumes in multiple sclerosis.

Krieger B, Bellenberg B, Roenneke AK, Schneider R, Ladopoulos T, Abbas Z, Rust R, Schmitz-Hübsch T, Chien C, Gold R, Paul F, Lukas C

pubmed logopapersMay 8 2025
The choroid plexus (ChP) plays a pivotal role in inflammatory processes that occur in multiple sclerosis (MS). The enlargement of the ChP in relapsing-remitting multiple sclerosis (RRMS) is considered to be an indication of disease activity and has been associated with periventricular remyelination failure. This cross-sectional study aimed to identify the relationship between ChP and periventricular tissue damage which occurs in MS, and to elucidate the role of neuroinflammation in primary progressive multiple sclerosis (PPMS). ChP volume was assessed by a novel deep learning segmentation method based on structural MRI data acquired from two centers. In total, 141 RRMS and 64 PPMS patients were included, along with 75 healthy control subjects. In addition, T1w/FLAIR ratios were calculated within periventricular bands to quantify microstructural tissue damage and to assess its relationship to ChP volume. When compared to healthy controls, ChP volumes were significantly increased in RRMS, but not in patients with PPMS. T1w/FLAIR ratios in the normal appearing white matter (NAWM) showing periventricular gradients were decreased in patients with multiple sclerosis when compared to healthy control subjects and lower T1w/FLAIR ratios radiating out from the lateral ventricles were found in patients with PPMS. A relationship between ChP volume and T1w/FLAIR ratio in NAWM was found within the inner periventricular bands in RRMS patients. A longer duration of disease was associated with larger ChP volumes only in RRMS patients. Enlarged ChP volumes were also significantly associated with reduced cortex volumes and increased lesion volumes in RRMS. Our analysis confirmed that the ChP was significantly enlarged in patients with RRMS, which was related to brain lesion volumes and which suggested a dynamic development as it was associated with disease duration. Plexus enlargement was further associated with periventricular demyelination or tissue damage assessed by T1w/FLAIR ratios in RRMS. Furthermore, we did not find an enlargement of the ChP in patients with PPMS, possibly indicating the reduced involvement of inflammatory processes in the progressive phase of MS. The association between enlarged ChP volumes and cortical atrophy in RRMS highlighted the vulnerability of structures close to the CSF.

MRI-based machine learning reveals proteasome subunit PSMB8-mediated malignant glioma phenotypes through activating TGFBR1/2-SMAD2/3 axis.

Pei D, Ma Z, Qiu Y, Wang M, Wang Z, Liu X, Zhang L, Zhang Z, Li R, Yan D

pubmed logopapersMay 8 2025
Gliomas are the most prevalent and aggressive neoplasms of the central nervous system, representing a major challenge for effective treatment and patient prognosis. This study identifies the proteasome subunit beta type-8 (PSMB8/LMP7) as a promising prognostic biomarker for glioma. Using a multiparametric radiomic model derived from preoperative magnetic resonance imaging (MRI), we accurately predicted PSMB8 expression levels. Notably, radiomic prediction of poor prognosis was highly consistent with elevated PSMB8 expression. Our findings demonstrate that PSMB8 depletion not only suppressed glioma cell proliferation and migration but also induced apoptosis via activation of the transforming growth factor beta (TGF-β) signaling pathway. This was supported by downregulation of key receptors (TGFBR1 and TGFBR2). Furthermore, interference with PSMB8 expression impaired phosphorylation and nuclear translocation of SMAD2/3, critical mediators of TGF-β signaling. Consequently, these molecular alterations resulted in reduced tumor progression and enhanced sensitivity to temozolomide (TMZ), a standard chemotherapeutic agent. Overall, our findings highlight PSMB8's pivotal role in glioma pathophysiology and its potential as a prognostic marker. This study also demonstrates the clinical utility of MRI radiomics for preoperative risk stratification and pre-diagnosis. Targeted inhibition of PSMB8 may represent a therapeutic strategy to overcome TMZ resistance and improve glioma patient outcomes.

Multimodal Integration of Plasma, MRI, and Genetic Risk for Cerebral Amyloid Prediction

yichen, w., Chen, H., yuxin, C., Yuyan, C., shiyun, Z., Kexin, W., Yidong, J., Tianyu, B., Yanxi, H., MingKai, Z., Chengxiang, Y., Guozheng, F., Weijie, H., Ni, S., Ying, H.

medrxiv logopreprintMay 8 2025
Accurate estimation of cerebral amyloid-{beta} (A{beta}) burden is critical for early detection and risk stratification in Alzheimers disease (AD). While A{beta} positron emission tomography (PET) remains the gold standard, its high cost, invasive nature and limited accessibility hinder broad clinical application. Blood-based biomarkers offer a non-invasive and cost-effective alternative, but their standalone predictive accuracy remains limited due to biological heterogeneity and limited reflection of central nervous system pathology. Here, we present a high-precision, multimodal prediction machine learning model that integrates plasma biomarkers, brain structural magnetic resonance imaging (sMRI) features, diffusion tensor imaging (DTI)-derived structural connectomes, and genetic risk profiles. The model was trained on 150 participants from the Alzheimers Disease Neuroimaging Initiative (ADNI) and externally validated on 111 participants from the SILCODE cohort. Multimodal integration substantially improved A{beta} prediction, with R{superscript 2} increasing from 0.515 using plasma biomarkers alone to 0.637 when adding imaging and genetic features. These results highlight the potential of this multimodal machine learning approach as a scalable, non-invasive, and economically viable alternative to PET for estimating A{beta} burden.

FF-PNet: A Pyramid Network Based on Feature and Field for Brain Image Registration

Ying Zhang, Shuai Guo, Chenxi Sun, Yuchen Zhu, Jinhai Xiang

arxiv logopreprintMay 8 2025
In recent years, deformable medical image registration techniques have made significant progress. However, existing models still lack efficiency in parallel extraction of coarse and fine-grained features. To address this, we construct a new pyramid registration network based on feature and deformation field (FF-PNet). For coarse-grained feature extraction, we design a Residual Feature Fusion Module (RFFM), for fine-grained image deformation, we propose a Residual Deformation Field Fusion Module (RDFFM). Through the parallel operation of these two modules, the model can effectively handle complex image deformations. It is worth emphasizing that the encoding stage of FF-PNet only employs traditional convolutional neural networks without any attention mechanisms or multilayer perceptrons, yet it still achieves remarkable improvements in registration accuracy, fully demonstrating the superior feature decoding capabilities of RFFM and RDFFM. We conducted extensive experiments on the LPBA and OASIS datasets. The results show our network consistently outperforms popular methods in metrics like the Dice Similarity Coefficient.

Hybrid method for automatic initialization and segmentation of ventricular on large-scale cardiovascular magnetic resonance images.

Pan N, Li Z, Xu C, Gao J, Hu H

pubmed logopapersMay 7 2025
Cardiovascular diseases are the number one cause of death globally, making cardiac magnetic resonance image segmentation a popular research topic. Existing schemas relying on manual user interaction or semi-automatic segmentation are infeasible when dealing thousands of cardiac MRI studies. Thus, we proposed a full automatic and robust algorithm for large-scale cardiac MRI segmentation by combining the advantages of deep learning localization and 3D-ASM restriction. The proposed method comprises several key techniques: 1) a hybrid network integrating CNNs and Transformer as a encoder with the EFG (Edge feature guidance) module (named as CTr-HNs) to localize the target regions of the cardiac on MRI images, 2) initial shape acquisition by alignment of coarse segmentation contours to the initial surface model of 3D-ASM, 3) refinement of the initial shape to cover all slices of MRI in the short axis by complex transformation. The datasets used are from the UK BioBank and the CAP (Cardiac Atlas Project). In cardiac coarse segmentation experiments on MR images, Dice coefficients (Dice), mean contour distances (MCD), and mean Hausdorff distances (HD95) are used to evaluate segmentation performance. In SPASM experiments, Point-to-surface (P2S) distances, Dice score are compared between automatic results and ground truth. The CTr-HNs from our proposed method achieves Dice coefficients (Dice), mean contour distances (MCD), and mean Hausdorff distances (HD95) of 0.95, 0.10 and 1.54 for the LV segmentation respectively, 0.88, 0.13 and 1.94 for the LV myocardium segmentation, and 0.91, 0.24 and 3.25 for the RV segmentation. The overall P2S errors from our proposed schema is 1.45 mm. For endocardium and epicardium, the Dice scores are 0.87 and 0.91 respectively. Our experimental results show that the proposed schema can automatically analyze large-scale quantification from population cardiac images with robustness and accuracy.

MRI-based multimodal AI model enables prediction of recurrence risk and adjuvant therapy in breast cancer.

Yu Y, Ren W, Mao L, Ouyang W, Hu Q, Yao Q, Tan Y, He Z, Ban X, Hu H, Lin R, Wang Z, Chen Y, Wu Z, Chen K, Ouyang J, Li T, Zhang Z, Liu G, Chen X, Li Z, Duan X, Wang J, Yao H

pubmed logopapersMay 7 2025
Timely intervention and improved prognosis for breast cancer patients rely on early metastasis risk detection and accurate treatment predictions. This study introduces an advanced multimodal MRI and AI-driven 3D deep learning model, termed the 3D-MMR-model, designed to predict recurrence risk in non-metastatic breast cancer patients. We conducted a multicenter study involving 1199 non-metastatic breast cancer patients from four institutions in China, with comprehensive MRI and clinical data retrospectively collected. Our model employed multimodal-data fusion, utilizing contrast-enhanced T1-weighted imaging (T1 + C) and T2-weighted imaging (T2WI) volumes, processed through a modified 3D-UNet for tumor segmentation and a DenseNet121-based architecture for disease-free survival (DFS) prediction. Additionally, we performed RNA-seq analysis to delve further into the relationship between concentrated hotspots within the tumor region and the tumor microenvironment. The 3D-MR-model demonstrated superior predictive performance, with time-dependent ROC analysis yielding AUC values of 0.90, 0.89, and 0.88 for 2-, 3-, and 4-year DFS predictions, respectively, in the training cohort. External validation cohorts corroborated these findings, highlighting the model's robustness across diverse clinical settings. Integration of clinicopathological features further enhanced the model's accuracy, with a multimodal approach significantly improving risk stratification and decision-making in clinical practice. Visualization techniques provided insights into the decision-making process, correlating predictions with tumor microenvironment characteristics. In summary, the 3D-MMR-model represents a significant advancement in breast cancer prognosis, combining cutting-edge AI technology with multimodal imaging to deliver precise and clinically relevant predictions of recurrence risk. This innovative approach holds promise for enhancing patient outcomes and guiding individualized treatment plans in breast cancer care.

Neuroanatomical-Based Machine Learning Prediction of Alzheimer's Disease Across Sex and Age

Jogeshwar, B. K., Lu, S., Nephew, B. C.

medrxiv logopreprintMay 7 2025
Alzheimers Disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. In 2024, in the US alone, it affected approximately 1 in 9 people aged 65 and older, equivalent to 6.9 million individuals. Early detection and accurate AD diagnosis are crucial for improving patient outcomes. Magnetic resonance imaging (MRI) has emerged as a valuable tool for examining brain structure and identifying potential AD biomarkers. This study performs predictive analyses by employing machine learning techniques to identify key brain regions associated with AD using numerical data derived from anatomical MRI scans, going beyond standard statistical methods. Using the Random Forest Algorithm, we achieved 92.87% accuracy in detecting AD from Mild Cognitive Impairment and Cognitive Normals. Subgroup analyses across nine sex- and age-based cohorts (69-76 years, 77-84 years, and unified 69-84 years) revealed the hippocampus, amygdala, and entorhinal cortex as consistent top-rank predictors. These regions showed distinct volume reductions across age and sex groups, reflecting distinct age- and sex-related neuroanatomical patterns. For instance, younger males and females (aged 69-76) exhibited volume decreases in the right hippocampus, suggesting its importance in the early stages of AD. Older males (77-84) showed substantial volume decreases in the left inferior temporal cortex. Additionally, the left middle temporal cortex showed decreased volume in females, suggesting a potential female-specific influence, while the right entorhinal cortex may have a male-specific impact. These age-specific sex differences could inform clinical research and treatment strategies, aiding in identifying neuroanatomical markers and therapeutic targets for future clinical interventions.
Page 112 of 1161159 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.