Sort by:
Page 111 of 1331328 results

Integrating anatomy and electrophysiology in the healthy human heart: Insights from biventricular statistical shape analysis using universal coordinates.

Van Santvliet L, Zappon E, Gsell MAF, Thaler F, Blondeel M, Dymarkowski S, Claessen G, Willems R, Urschler M, Vandenberk B, Plank G, De Vos M

pubmed logopapersJun 1 2025
A cardiac digital twin is a virtual replica of a patient-specific heart, mimicking its anatomy and physiology. A crucial step of building a cardiac digital twin is anatomical twinning, where the computational mesh of the digital twin is tailored to the patient-specific cardiac anatomy. In a number of studies, the effect of anatomical variation on clinically relevant functional measurements like electrocardiograms (ECGs) is investigated, using computational simulations. While such a simulation environment provides researchers with a carefully controlled ground truth, the impact of anatomical differences on functional measurements in real-world patients remains understudied. In this study, we develop a biventricular statistical shape model and use it to quantify the effect of biventricular anatomy on ECG-derived and demographic features, providing novel insights for the development of digital twins of cardiac electrophysiology. To this end, a dataset comprising high-resolution cardiac CT scans from 271 healthy individuals, including athletes, is utilized. Furthermore, a novel, universal, ventricular coordinate-based method is developed to establish lightweight shape correspondence. The performance of the shape model is rigorously established, focusing on its dimensionality reduction capabilities and the training data requirements. The most important variability in healthy ventricles captured by the model is their size, followed by their elongation. These anatomical factors are found to significantly correlate with ECG-derived and demographic features. Additionally, a comprehensive synthetic cohort is made available, featuring ready-to-use biventricular meshes with fiber structures and anatomical region annotations. These meshes are well-suited for electrophysiological simulations.

An Optimized Framework of QSM Mask Generation Using Deep Learning: QSMmask-Net.

Lee G, Jung W, Sakaie KE, Oh SH

pubmed logopapersJun 1 2025
Quantitative susceptibility mapping (QSM) provides the spatial distribution of magnetic susceptibility within tissues through sequential steps: phase unwrapping and echo combination, mask generation, background field removal, and dipole inversion. Accurate mask generation is crucial, as masks excluding regions outside the brain and without holes are necessary to minimize errors and streaking artifacts during QSM reconstruction. Variations in susceptibility values can arise from different mask generation methods, highlighting the importance of optimizing mask creation. In this study, we propose QSMmask-net, a deep neural network-based method for generating precise QSM masks. QSMmask-net achieved the highest Dice score compared to other mask generation methods. Mean susceptibility values using QSMmask-net masks showed the lowest differences from manual masks (ground truth) in simulations and healthy controls (no significant difference, p > 0.05). Linear regression analysis confirmed a strong correlation with manual masks for hemorrhagic lesions (slope = 0.9814 ± 0.007, intercept = 0.0031 ± 0.001, R<sup>2</sup> = 0.9992, p < 0.05). We have demonstrated that mask generation methods can affect the susceptibility value estimations. QSMmask-net reduces the labor required for mask generation while providing mask quality comparable to manual methods. The proposed method enables users without specialized expertise to create optimized masks, potentially broadening QSM applicability efficiently.

Advanced Three-Dimensional Assessment and Planning for Hallux Valgus.

Forin Valvecchi T, Marcolli D, De Cesar Netto C

pubmed logopapersJun 1 2025
The article discusses advanced three-dimensional evaluation of hallux valgus deformity using weightbearing computed tomography. Conventional two-dimensional radiographs fall short in assessing the complexity of hallux valgus deformities, whereas weightbearing computed tomography provides detailed insights into bone alignment and joint stability in a weightbearing state. Recent studies have highlighted the significance of first ray hypermobility and intrinsic metatarsal rotation in hallux valgus, influencing surgical planning and outcomes. The integration of semiautomatic and artificial intelligence-assisted tools with weightbearing computed tomography is enhancing the precision of deformity assessment, leading to more personalized and effective hallux valgus management.

Accuracy of an Automated Bone Scan Index Measurement System Enhanced by Deep Learning of the Female Skeletal Structure in Patients with Breast Cancer.

Fukai S, Daisaki H, Yamashita K, Kuromori I, Motegi K, Umeda T, Shimada N, Takatsu K, Terauchi T, Koizumi M

pubmed logopapersJun 1 2025
VSBONE<sup>®</sup> BSI (VSBONE), an automated bone scan index (BSI) measurement system was updated from version 2.1 (ver.2) to 3.0 (ver.3). VSBONE ver.3 incorporates deep learning of the skeletal structures of 957 new women, and it can be applied in patients with breast cancer. However, the performance of the updated VSBONE remains unclear. This study aimed to validate the diagnostic accuracy of the VSBONE system in patients with breast cancer. In total, 220 Japanese patients with breast cancer who underwent bone scintigraphy with single-photon emission computed tomography/computed tomography (SPECT/CT) were retrospectively analyzed. The patients were diagnosed with active bone metastases (<i>n</i> = 20) and non-bone metastases (<i>n</i> = 200) according to the physician's radiographic image interpretation. The patients were assessed using the VSBONE ver.2 and VSBONE ver.3, and the BSI findings were compared with the interpretation results by the physicians. The occurrence of segmentation errors, the association of BSI between VSBONE ver.2 and VSBONE ver.3, and the diagnostic accuracy of the systems were evaluated. VSBONE ver.2 and VSBONE ver.3 had segmentation errors in four and two patients. Significant positive linear correlations were confirmed in both versions of the BSI (<i>r</i> = 0.92). The diagnostic accuracy was 54.1% in VSBOBE ver.2, and 80.5% in VSBONE ver.3 <i>(P</i> < 0.001), respectively. The diagnostic accuracy of VSBONE was improved through deep learning of the female skeletal structures. The updated VSBONE ver.3 can be a reliable automated system for measuring BSI in patients with breast cancer.

Internal Target Volume Estimation for Liver Cancer Radiation Therapy Using an Ultra Quality 4-Dimensional Magnetic Resonance Imaging.

Liao YP, Xiao H, Wang P, Li T, Aguilera TA, Visak JD, Godley AR, Zhang Y, Cai J, Deng J

pubmed logopapersJun 1 2025
Accurate internal target volume (ITV) estimation is essential for effective and safe radiation therapy in liver cancer. This study evaluates the clinical value of an ultraquality 4-dimensional magnetic resonance imaging (UQ 4D-MRI) technique for ITV estimation. The UQ 4D-MRI technique maps motion information from a low spatial resolution dynamic volumetric MRI onto a high-resolution 3-dimensional MRI used for radiation treatment planning. It was validated using a motion phantom and data from 13 patients with liver cancer. ITV generated from UQ 4D-MRI (ITV<sub>4D</sub>) was compared with those obtained through isotropic expansions (ITV<sub>2 mm</sub> and ITV<sub>5 mm</sub>) and those measured using conventional 4D-computed tomography (computed tomography-based ITV, ITV<sub>CT</sub>) for each patient. Phantom studies showed a displacement measurement difference of <5% between UQ 4D-MRI and single-slice 2-dimensional cine MRI. In patient studies, the maximum superior-inferior displacements of the tumor on UQ 4D-MRI showed no significant difference compared with single-slice 2-dimensional cine imaging (<i>P</i> = .985). Computed tomography-based ITV showed no significant difference (<i>P</i> = .72) with ITV<sub>4D</sub>, whereas ITV<sub>2 mm</sub> and ITV<sub>5 mm</sub> significantly overestimated the volume by 29.0% (<i>P</i> = .002) and 120.7% (<i>P</i> < .001) compared with ITV<sub>4D</sub>, respectively. UQ 4D-MRI enables accurate motion assessment for liver tumors, facilitating precise ITV delineation for radiation treatment planning. Despite uncertainties from artificial intelligence-based delineation and variations in patients' respiratory patterns, UQ 4D-MRI excels at capturing tumor motion trajectories, potentially improving treatment planning accuracy and reducing margins in liver cancer radiation therapy.

Prognostic assessment of osteolytic lesions and mechanical properties of bones bearing breast cancer using neural network and finite element analysis<sup>☆</sup>.

Wang S, Chu T, Wasi M, Guerra RM, Yuan X, Wang L

pubmed logopapersJun 1 2025
The management of skeletal-related events (SREs), particularly the prevention of pathological fractures, is crucial for cancer patients. Current clinical assessment of fracture risk is mostly based on medical images, but incorporating sequential images in the assessment remains challenging. This study addressed this issue by leveraging a comprehensive dataset consisting of 260 longitudinal micro-computed tomography (μCT) scans acquired in normal and breast cancer bearing mice. A machine learning (ML) model based on a spatial-temporal neural network was built to forecast bone structures from previous μCT scans, which were found to have an overall similarity coefficient (Dice) of 0.814 with ground truths. Despite the predicted lesion volumes (18.5 ​% ​± ​15.3 ​%) being underestimated by ∼21 ​% than the ground truths' (22.1 ​% ​± ​14.8 ​%), the time course of the lesion growth was better represented in the predicted images than the preceding scans (10.8 ​% ​± ​6.5 ​%). Under virtual biomechanical testing using finite element analysis (FEA), the predicted bone structures recapitulated the loading carrying behaviors of the ground truth structures with a positive correlation (y ​= ​0.863x) and a high coefficient of determination (R<sup>2</sup> ​= ​0.955). Interestingly, the compliances of the predicted and ground truth structures demonstrated nearly identical linear relationships with the lesion volumes. In summary, we have demonstrated that bone deterioration could be proficiently predicted using machine learning in our preclinical dataset, suggesting the importance of large longitudinal clinical imaging datasets in fracture risk assessment for cancer bone metastasis.

SAMBV: A fine-tuned SAM with interpolation consistency regularization for semi-supervised bi-ventricle segmentation from cardiac MRI.

Wang Y, Zhou S, Lu K, Wang Y, Zhang L, Liu W, Wang Z

pubmed logopapersJun 1 2025
The SAM (segment anything model) is a foundation model for general purpose image segmentation, however, when it comes to a specific medical application, such as segmentation of both ventricles from the 2D cardiac MRI, the results are not satisfactory. The scarcity of labeled medical image data further increases the difficulty to apply the SAM to medical image processing. To address these challenges, we propose the SAMBV by fine-tuning the SAM for semi-supervised segmentation of bi-ventricle from the 2D cardiac MRI. The SAM is tuned in three aspects, (i) the position and feature adapters are introduced so that the SAM can adapt to bi-ventricle segmentation. (ii) a dual-branch encoder is incorporated to collect missing local feature information in SAM so as to improve bi-ventricle segmentation. (iii) the interpolation consistency regularization (ICR) semi-supervised manner is utilized, allowing the SAMBV to achieve competitive performance with only 40% of the labeled data in the ACDC dataset. Experimental results demonstrate that the proposed SAMBV achieves an average Dice score improvement of 17.6% over the original SAM, raising its performance from 74.49% to 92.09%. Furthermore, the SAMBV outperforms other supervised SAM fine-tuning methods, showing its effectiveness in semi-supervised medical image segmentation tasks. Notably, the proposed method is specifically designed for 2D MRI data.

3-D contour-aware U-Net for efficient rectal tumor segmentation in magnetic resonance imaging.

Lu Y, Dang J, Chen J, Wang Y, Zhang T, Bai X

pubmed logopapersJun 1 2025
Magnetic resonance imaging (MRI), as a non-invasive detection method, is crucial for the clinical diagnosis and treatment plan of rectal cancer. However, due to the low contrast of rectal tumor signal in MRI, segmentation is often inaccurate. In this paper, we propose a new three-dimensional rectal tumor segmentation method CAU-Net based on T2-weighted MRI images. The method adopts a convolutional neural network to extract multi-scale features from MRI images and uses a Contour-Aware decoder and attention fusion block (AFB) for contour enhancement. We also introduce adversarial constraint to improve augmentation performance. Furthermore, we construct a dataset of 108 MRI-T2 volumes for the segmentation of locally advanced rectal cancer. Finally, CAU-Net achieved a DSC of 0.7112 and an ASD of 2.4707, which outperforms other state-of-the-art methods. Various experiments on this dataset show that CAU-Net has high accuracy and efficiency in rectal tumor segmentation. In summary, proposed method has important clinical application value and can provide important support for medical image analysis and clinical treatment of rectal cancer. With further development and application, this method has the potential to improve the accuracy of rectal cancer diagnosis and treatment.

Scale-Aware Super-Resolution Network With Dual Affinity Learning for Lesion Segmentation From Medical Images.

Luo L, Li Y, Chai Z, Lin H, Heng PA, Chen H

pubmed logopapersJun 1 2025
Convolutional neural networks (CNNs) have shown remarkable progress in medical image segmentation. However, the lesion segmentation remains a challenge to state-of-the-art CNN-based algorithms due to the variance in scales and shapes. On the one hand, tiny lesions are hard to delineate precisely from the medical images which are often of low resolutions. On the other hand, segmenting large-size lesions requires large receptive fields, which exacerbates the first challenge. In this article, we present a scale-aware super-resolution (SR) network to adaptively segment lesions of various sizes from low-resolution (LR) medical images. Our proposed network contains dual branches to simultaneously conduct lesion mask SR (LMSR) and lesion image SR (LISR). Meanwhile, we introduce scale-aware dilated convolution (SDC) blocks into the multitask decoders to adaptively adjust the receptive fields of the convolutional kernels according to the lesion sizes. To guide the segmentation branch to learn from richer high-resolution (HR) features, we propose a feature affinity (FA) module and a scale affinity (SA) module to enhance the multitask learning of the dual branches. On multiple challenging lesion segmentation datasets, our proposed network achieved consistent improvements compared with other state-of-the-art methods. Code will be available at: https://github.com/poiuohke/SASR_Net.

Coarse for Fine: Bounding Box Supervised Thyroid Ultrasound Image Segmentation Using Spatial Arrangement and Hierarchical Prediction Consistency.

Chi J, Lin G, Li Z, Zhang W, Chen JH, Huang Y

pubmed logopapersJun 1 2025
Weakly-supervised learning methods have become increasingly attractive for medical image segmentation, but suffered from a high dependence on quantifying the pixel-wise affinities of low-level features, which are easily corrupted in thyroid ultrasound images, resulting in segmentation over-fitting to weakly annotated regions without precise delineation of target boundaries. We propose a dual-branch weakly-supervised learning framework to optimize the backbone segmentation network by calibrating semantic features into rational spatial distribution under the indirect, coarse guidance of the bounding box mask. Specifically, in the spatial arrangement consistency branch, the maximum activations sampled from the preliminary segmentation prediction and the bounding box mask along the horizontal and vertical dimensions are compared to measure the rationality of the approximate target localization. In the hierarchical prediction consistency branch, the target and background prototypes are encapsulated from the semantic features under the combined guidance of the preliminary segmentation prediction and the bounding box mask. The secondary segmentation prediction induced from the prototypes is compared with the preliminary prediction to quantify the rationality of the elaborated target and background semantic feature perception. Experiments on three thyroid datasets illustrate that our model outperforms existing weakly-supervised methods for thyroid gland and nodule segmentation and is comparable to the performance of fully-supervised methods with reduced annotation time. The proposed method has provided a weakly-supervised segmentation strategy by simultaneously considering the target's location and the rationality of target and background semantic features distribution. It can improve the applicability of deep learning based segmentation in the clinical practice.
Page 111 of 1331328 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.