Sort by:
Page 11 of 3423413 results

Deep Learning for Breast Mass Discrimination: Integration of B-Mode Ultrasound & Nakagami Imaging with Automatic Lesion Segmentation

Hassan, M. W., Hossain, M. M.

medrxiv logopreprintSep 15 2025
ObjectiveThis study aims to enhance breast cancer diagnosis by developing an automated deep learning framework for real-time, quantitative ultrasound imaging. Breast cancer is the second leading cause of cancer-related deaths among women, and early detection is crucial for improving survival rates. Conventional ultrasound, valued for its non-invasive nature and real-time capability, is limited by qualitative assessments and inter-observer variability. Quantitative ultrasound (QUS) methods, including Nakagami imaging--which models the statistical distribution of backscattered signals and lesion morphology--present an opportunity for more objective analysis. MethodsThe proposed framework integrates three convolutional neural networks (CNNs): (1) NakaSynthNet, synthesizing quantitative Nakagami parameter images from B-mode ultrasound; (2) SegmentNet, enabling automated lesion segmentation; and (3) FeatureNet, which combines anatomical and statistical features for classifying lesions as benign or malignant. Training utilized a diverse dataset of 110,247 images, comprising clinical B-mode scans and various simulated examples (fruit, mammographic lesions, digital phantoms). Quantitative performance was evaluated using mean squared error (MSE), structural similarity index (SSIM), segmentation accuracy, sensitivity, specificity, and area under the curve (AUC). ResultsNakaSynthNet achieved real-time synthesis at 21 frames/s, with MSE of 0.09% and SSIM of 98%. SegmentNet reached 98.4% accuracy, and FeatureNet delivered 96.7% overall classification accuracy, 93% sensitivity, 98% specificity, and an AUC of 98%. ConclusionThe proposed multi-parametric deep learning pipeline enables accurate, real-time breast cancer diagnosis from ultrasound data using objective quantitative imaging. SignificanceThis framework advances the clinical utility of ultrasound by reducing subjectivity and providing robust, multi-parametric information for improved breast cancer detection.

Adapting and Evaluating Multimodal Large Language Models for Adolescent Idiopathic Scoliosis Self-Management: A Divide and Conquer Framework

Zhaolong Wu, Pu Luo, Jason Pui Yin Cheung, Teng Zhang

arxiv logopreprintSep 15 2025
This study presents the first comprehensive evaluation of Multimodal Large Language Models (MLLMs) for Adolescent Idiopathic Scoliosis (AIS) self-management. We constructed a database of approximately 3,000 anteroposterior X-rays with diagnostic texts and evaluated five MLLMs through a `Divide and Conquer' framework consisting of a visual question-answering task, a domain knowledge assessment task, and a patient education counseling assessment task. Our investigation revealed limitations of MLLMs' ability in interpreting complex spinal radiographs and comprehending AIS care knowledge. To address these, we pioneered enhancing MLLMs with spinal keypoint prompting and compiled an AIS knowledge base for retrieval augmented generation (RAG), respectively. Results showed varying effectiveness of visual prompting across different architectures, while RAG substantially improved models' performances on the knowledge assessment task. Our findings indicate current MLLMs are far from capable in realizing personalized assistant in AIS care. The greatest challenge lies in their abilities to obtain accurate detections of spinal deformity locations (best accuracy: 0.55) and directions (best accuracy: 0.13).

Large language models in radiology workflows: An exploratory study of generative AI for non-visual tasks in the German healthcare system.

Steinhauser S, Welsch S

pubmed logopapersSep 15 2025
Large language models (LLMs) are gaining attention for their potential to enhance radiology workflows by addressing challenges such as increasing workloads and staff shortages. However, limited knowledge among radiologists and concerns about their practical implementation and ethical implications present challenges. This study investigates radiologists' perspectives on the use of LLMs, exploring their potential benefits, challenges, and impact on workflows and professional roles. An exploratory, qualitative study was conducted using 12 semi-structured interviews with radiology experts. Data were analyzed to assess participants' awareness, attitudes, and perceived applications of LLMs in radiology. LLMs were identified as promising tools for reducing workloads by streamlining tasks like summarizing clinical histories and generating standardized reports, improving communication and efficiency. Participants expressed openness to LLM integration but noted concerns about their impact on human interaction, ethical standards, and liability. The role of radiologists is expected to evolve with LLM adoption, with a shift toward data stewardship and interprofessional collaboration. Barriers to implementation included limited awareness, regulatory constraints, and outdated infrastructure. The integration of LLMs is hindered by regulatory challenges, outdated infrastructure, and limited awareness among radiologists. Policymakers should establish clear, practical regulations to address liability and ethical concerns while ensuring compliance with privacy standards. Investments in modernizing clinical infrastructure and expanding training programs are critical to enable radiologists to effectively use these tools. By addressing these barriers, LLMs can enhance efficiency, reduce workloads, and improve patient care, while preserving the central role of radiologists in diagnostic and therapeutic processes.

Prediction and Causality of functional MRI and synthetic signal using a Zero-Shot Time-Series Foundation Model

Alessandro Crimi, Andrea Brovelli

arxiv logopreprintSep 15 2025
Time-series forecasting and causal discovery are central in neuroscience, as predicting brain activity and identifying causal relationships between neural populations and circuits can shed light on the mechanisms underlying cognition and disease. With the rise of foundation models, an open question is how they compare to traditional methods for brain signal forecasting and causality analysis, and whether they can be applied in a zero-shot setting. In this work, we evaluate a foundation model against classical methods for inferring directional interactions from spontaneous brain activity measured with functional magnetic resonance imaging (fMRI) in humans. Traditional approaches often rely on Wiener-Granger causality. We tested the forecasting ability of the foundation model in both zero-shot and fine-tuned settings, and assessed causality by comparing Granger-like estimates from the model with standard Granger causality. We validated the approach using synthetic time series generated from ground-truth causal models, including logistic map coupling and Ornstein-Uhlenbeck processes. The foundation model achieved competitive zero-shot forecasting fMRI time series (mean absolute percentage error of 0.55 in controls and 0.27 in patients). Although standard Granger causality did not show clear quantitative differences between models, the foundation model provided a more precise detection of causal interactions. Overall, these findings suggest that foundation models offer versatility, strong zero-shot performance, and potential utility for forecasting and causal discovery in time-series data.

Enriched text-guided variational multimodal knowledge distillation network (VMD) for automated diagnosis of plaque vulnerability in 3D carotid artery MRI

Bo Cao, Fan Yu, Mengmeng Feng, SenHao Zhang, Xin Meng, Yue Zhang, Zhen Qian, Jie Lu

arxiv logopreprintSep 15 2025
Multimodal learning has attracted much attention in recent years due to its ability to effectively utilize data features from a variety of different modalities. Diagnosing the vulnerability of atherosclerotic plaques directly from carotid 3D MRI images is relatively challenging for both radiologists and conventional 3D vision networks. In clinical practice, radiologists assess patient conditions using a multimodal approach that incorporates various imaging modalities and domain-specific expertise, paving the way for the creation of multimodal diagnostic networks. In this paper, we have developed an effective strategy to leverage radiologists' domain knowledge to automate the diagnosis of carotid plaque vulnerability through Variation inference and Multimodal knowledge Distillation (VMD). This method excels in harnessing cross-modality prior knowledge from limited image annotations and radiology reports within training data, thereby enhancing the diagnostic network's accuracy for unannotated 3D MRI images. We conducted in-depth experiments on the dataset collected in-house and verified the effectiveness of the VMD strategy we proposed.

DinoAtten3D: Slice-Level Attention Aggregation of DinoV2 for 3D Brain MRI Anomaly Classification

Fazle Rafsani, Jay Shah, Catherine D. Chong, Todd J. Schwedt, Teresa Wu

arxiv logopreprintSep 15 2025
Anomaly detection and classification in medical imaging are critical for early diagnosis but remain challenging due to limited annotated data, class imbalance, and the high cost of expert labeling. Emerging vision foundation models such as DINOv2, pretrained on extensive, unlabeled datasets, offer generalized representations that can potentially alleviate these limitations. In this study, we propose an attention-based global aggregation framework tailored specifically for 3D medical image anomaly classification. Leveraging the self-supervised DINOv2 model as a pretrained feature extractor, our method processes individual 2D axial slices of brain MRIs, assigning adaptive slice-level importance weights through a soft attention mechanism. To further address data scarcity, we employ a composite loss function combining supervised contrastive learning with class-variance regularization, enhancing inter-class separability and intra-class consistency. We validate our framework on the ADNI dataset and an institutional multi-class headache cohort, demonstrating strong anomaly classification performance despite limited data availability and significant class imbalance. Our results highlight the efficacy of utilizing pretrained 2D foundation models combined with attention-based slice aggregation for robust volumetric anomaly detection in medical imaging. Our implementation is publicly available at https://github.com/Rafsani/DinoAtten3D.git.

MambaDiff: Mamba-Enhanced Diffusion Model for 3D Medical Image Segmentation.

Liu Y, Feng Y, Cheng J, Zhan H, Zhu Z

pubmed logopapersSep 15 2025
Accurate 3D medical image segmentation is crucial for diagnosis and treatment. Diffusion models demonstrate promising performance in medical image segmentation tasks due to the progressive nature of the generation process and the explicit modeling of data distributions. However, the weak guidance of conditional information and insufficient feature extraction in diffusion models lead to the loss of fine-grained features and structural consistency in the segmentation results, thereby affecting the accuracy of medical image segmentation. To address this challenge, we propose a Mamba-Enhanced Diffusion Model for 3D Medical Image Segmentation. We extract multilevel semantic features from the original images using an encoder and tightly integrate them with the denoising process of the diffusion model through a Semantic Hierarchical Embedding (SHE) mechanism, to capture the intricate relationship between the noisy label and image data. Meanwhile, we design a Global-Slice Perception Mamba (GSPM) layer, which integrates multi-dimensional perception mechanisms to endow the model with comprehensive spatial reasoning and feature extraction capabilities. Experimental results show that our proposed MambaDiff achieves more competitive performance compared to prior arts with substantially fewer parameters on four public medical image segmentation datasets including BraTS 2021, BraTS 2024, LiTS and MSD Hippocampus. The source code of our method is available at https://github.com/yuliu316316/MambaDiff.

Prediction and Causality of functional MRI and synthetic signal using a Zero-Shot Time-Series Foundation Model

Alessandro Crimi, Andrea Brovelli

arxiv logopreprintSep 15 2025
Time-series forecasting and causal discovery are central in neuroscience, as predicting brain activity and identifying causal relationships between neural populations and circuits can shed light on the mechanisms underlying cognition and disease. With the rise of foundation models, an open question is how they compare to traditional methods for brain signal forecasting and causality analysis, and whether they can be applied in a zero-shot setting. In this work, we evaluate a foundation model against classical methods for inferring directional interactions from spontaneous brain activity measured with functional magnetic resonance imaging (fMRI) in humans. Traditional approaches often rely on Wiener-Granger causality. We tested the forecasting ability of the foundation model in both zero-shot and fine-tuned settings, and assessed causality by comparing Granger-like estimates from the model with standard Granger causality. We validated the approach using synthetic time series generated from ground-truth causal models, including logistic map coupling and Ornstein-Uhlenbeck processes. The foundation model achieved competitive zero-shot forecasting fMRI time series (mean absolute percentage error of 0.55 in controls and 0.27 in patients). Although standard Granger causality did not show clear quantitative differences between models, the foundation model provided a more precise detection of causal interactions. Overall, these findings suggest that foundation models offer versatility, strong zero-shot performance, and potential utility for forecasting and causal discovery in time-series data.

U-Mamba2: Scaling State Space Models for Dental Anatomy Segmentation in CBCT

Zhi Qin Tan, Xiatian Zhu, Owen Addison, Yunpeng Li

arxiv logopreprintSep 15 2025
Cone-Beam Computed Tomography (CBCT) is a widely used 3D imaging technique in dentistry, providing volumetric information about the anatomical structures of jaws and teeth. Accurate segmentation of these anatomies is critical for clinical applications such as diagnosis and surgical planning, but remains time-consuming and challenging. In this paper, we present U-Mamba2, a new neural network architecture designed for multi-anatomy CBCT segmentation in the context of the ToothFairy3 challenge. U-Mamba2 integrates the Mamba2 state space models into the U-Net architecture, enforcing stronger structural constraints for higher efficiency without compromising performance. In addition, we integrate interactive click prompts with cross-attention blocks, pre-train U-Mamba2 using self-supervised learning, and incorporate dental domain knowledge into the model design to address key challenges of dental anatomy segmentation in CBCT. Extensive experiments, including independent tests, demonstrate that U-Mamba2 is both effective and efficient, securing top 3 places in both tasks of the Toothfairy3 challenge. In Task 1, U-Mamba2 achieved a mean Dice of 0.792, HD95 of 93.19 with the held-out test data, with an average inference time of XX (TBC during the ODIN workshop). In Task 2, U-Mamba2 achieved the mean Dice of 0.852 and HD95 of 7.39 with the held-out test data. The code is publicly available at https://github.com/zhiqin1998/UMamba2.

Evaluating the role of LLMs in supporting patient education during the informed consent process for routine radiology procedures.

Einspänner E, Schwab R, Hupfeld S, Thormann M, Fuchs E, Gawlitza M, Borggrefe J, Behme D

pubmed logopapersSep 15 2025
This study evaluated three LLM chatbots (GPT-3.5-turbo, GPT-4-turbo, and GPT-4o) on their effectiveness in supporting patient education by answering common patient questions for CT, MRI, and DSA informed consent, assessing their accuracy and clarity. Two radiologists formulated 90 questions categorized as general, clinical, or technical. Each LLM answered every question five times. Radiologists then rated the responses for medical accuracy and clarity, while medical physicists assessed technical accuracy using a Likert scale. semantic similarity was analyzed with SBERT and cosine similarity. Ratings improved with newer model versions. Linear mixed-effects models revealed that GPT-4 models were rated significantly higher than GPT-3.5 (p < 0.001) by both physicians and physicists. However, physicians' ratings for GPT-4 models showed a significant performance decrease for complex modalities like DSA and MRI (p < 0.01), a pattern not observed in physicists' ratings. SBERT analysis revealed high internal consistency across all models. SBERT analysis revealed high internal consistency across all models. Variability in ratings revealed that while models effectively handled general and technical questions, they struggled with contextually complex medical inquiries requiring personalized responses and nuanced understanding. Statistical analysis confirms that while newer models are superior, their performance is modality-dependent and perceived differently by clinical and technical experts. This study evaluates the potential of LLMs to enhance informed consent in radiology, highlighting strengths in general and technical questions while noting limitations with complex clinical inquiries, with performance varying significantly by model type and imaging modality.
Page 11 of 3423413 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.