Sort by:
Page 11 of 68675 results

High Resolution Isotropic 3D Cine imaging with Automated Segmentation using Concatenated 2D Real-time Imaging and Deep Learning

Mark Wrobel, Michele Pascale, Tina Yao, Ruaraidh Campbell, Elena Milano, Michael Quail, Jennifer Steeden, Vivek Muthurangu

arxiv logopreprintJun 27 2025
Background: Conventional cardiovascular magnetic resonance (CMR) in paediatric and congenital heart disease uses 2D, breath-hold, balanced steady state free precession (bSSFP) cine imaging for assessment of function and cardiac-gated, respiratory-navigated, static 3D bSSFP whole-heart imaging for anatomical assessment. Our aim is to concatenate a stack 2D free-breathing real-time cines and use Deep Learning (DL) to create an isotropic a fully segmented 3D cine dataset from these images. Methods: Four DL models were trained on open-source data that performed: a) Interslice contrast correction; b) Interslice respiratory motion correction; c) Super-resolution (slice direction); and d) Segmentation of right and left atria and ventricles (RA, LA, RV, and LV), thoracic aorta (Ao) and pulmonary arteries (PA). In 10 patients undergoing routine cardiovascular examination, our method was validated on prospectively acquired sagittal stacks of real-time cine images. Quantitative metrics (ventricular volumes and vessel diameters) and image quality of the 3D cines were compared to conventional breath hold cine and whole heart imaging. Results: All real-time data were successfully transformed into 3D cines with a total post-processing time of <1 min in all cases. There were no significant biases in any LV or RV metrics with reasonable limits of agreement and correlation. There is also reasonable agreement for all vessel diameters, although there was a small but significant overestimation of RPA diameter. Conclusion: We have demonstrated the potential of creating a 3D-cine data from concatenated 2D real-time cine images using a series of DL models. Our method has short acquisition and reconstruction times with fully segmented data being available within 2 minutes. The good agreement with conventional imaging suggests that our method could help to significantly speed up CMR in clinical practice.

BrainMT: A Hybrid Mamba-Transformer Architecture for Modeling Long-Range Dependencies in Functional MRI Data

Arunkumar Kannan, Martin A. Lindquist, Brian Caffo

arxiv logopreprintJun 27 2025
Recent advances in deep learning have made it possible to predict phenotypic measures directly from functional magnetic resonance imaging (fMRI) brain volumes, sparking significant interest in the neuroimaging community. However, existing approaches, primarily based on convolutional neural networks or transformer architectures, often struggle to model the complex relationships inherent in fMRI data, limited by their inability to capture long-range spatial and temporal dependencies. To overcome these shortcomings, we introduce BrainMT, a novel hybrid framework designed to efficiently learn and integrate long-range spatiotemporal attributes in fMRI data. Our framework operates in two stages: (1) a bidirectional Mamba block with a temporal-first scanning mechanism to capture global temporal interactions in a computationally efficient manner; and (2) a transformer block leveraging self-attention to model global spatial relationships across the deep features processed by the Mamba block. Extensive experiments on two large-scale public datasets, UKBioBank and the Human Connectome Project, demonstrate that BrainMT achieves state-of-the-art performance on both classification (sex prediction) and regression (cognitive intelligence prediction) tasks, outperforming existing methods by a significant margin. Our code and implementation details will be made publicly available at this https://github.com/arunkumar-kannan/BrainMT-fMRI

Deep learning for hydrocephalus prognosis: Advances, challenges, and future directions: A review.

Huang J, Shen N, Tan Y, Tang Y, Ding Z

pubmed logopapersJun 27 2025
Diagnosis of hydrocephalus involves a careful check of the patient's history and thorough neurological assessment. The traditional diagnosis has predominantly depended on the professional judgment of physicians based on clinical experience, but with the advancement of precision medicine and individualized treatment, such experience-based methods are no longer sufficient to keep pace with current clinical requirements. To fit this adjustment, the medical community actively devotes itself to data-driven intelligent diagnostic solutions. Building a prognosis prediction model for hydrocephalus has thus become a new focus, among which intelligent prediction systems supported by deep learning offer new technical advantages for clinical diagnosis and treatment decisions. Over the past several years, algorithms of deep learning have demonstrated conspicuous advantages in medical image analysis. Studies revealed that the accuracy rate of the diagnosis of hydrocephalus by magnetic resonance imaging can reach 90% through convolutional neural networks, while their sensitivity and specificity are also better than these of traditional methods. With the extensive use of medical technology in terms of deep learning, its successful use in modeling hydrocephalus prognosis has also drawn extensive attention and recognition from scholars. This review explores the application of deep learning in hydrocephalus diagnosis and prognosis, focusing on image-based, biochemical, and structured data models. Highlighting recent advancements, challenges, and future trajectories, the study emphasizes deep learning's potential to enhance personalized treatment and improve outcomes.

Regional Cortical Thinning and Area Reduction Are Associated with Cognitive Impairment in Hemodialysis Patients.

Chen HJ, Qiu J, Qi Y, Guo Y, Zhang Z, Qin H, Wu F, Chen F

pubmed logopapersJun 27 2025
Magnetic resonance imaging (MRI) has shown that patients with end-stage renal disease have decreased gray matter volume and density. However, the cortical area and thickness in patients on hemodialysis are uncertain, and the relationship between patients' cognition and cortical alterations remains unclear. Thirty-six hemodialysis patients and 25 age- and sex-matched healthy controls were enrolled in this study and underwent brain MRI scans and neuropsychological assessments. According to the Desikan-Killiany atlas, the brain is divided into 68 regions. Using FreeSurfer software, we analyzed the differences in cortical area and thickness of each region between groups. Machine learning-based classification was also used to differentiate hemodialysis patients from healthy individuals. The patients exhibited decreased cortical thickness in the frontal and temporal regions, including the left bankssts, left lingual gyrus, left pars triangularis, bilateral superior temporal gyrus, and right pars opercularis and decreased cortical area in the left rostral middle frontal gyrus, left superior frontal gyrus, right fusiform gyrus, right pars orbitalis and right superior frontal gyrus. Decreased cortical thickness was positively associated with poorer scores on the neuropsychological tests and increased uric acid and urea levels. Cortical thickness pattern allowed differentiating the patients from the controls with 96.7% accuracy (97.5% sensitivity, 95.0% specificity, 97.5% precision, and AUC: 0.983) on the support vector machine analysis. Patients on hemodialysis exhibited decreased cortical area and thickness, which was associated with poorer cognition and uremic toxins.

Towards automated multi-regional lung parcellation for 0.55-3T 3D T2w fetal MRI

Uus, A., Avena Zampieri, C., Downes, F., Egloff Collado, A., Hall, M., Davidson, J., Payette, K., Aviles Verdera, J., Grigorescu, I., Hajnal, J. V., Deprez, M., Aertsen, M., Hutter, J., Rutherford, M., Deprest, J., Story, L.

medrxiv logopreprintJun 26 2025
Fetal MRI is increasingly being employed in the diagnosis of fetal lung anomalies and segmentation-derived total fetal lung volumes are used as one of the parameters for prediction of neonatal outcomes. However, in clinical practice, segmentation is performed manually in 2D motion-corrupted stacks with thick slices which is time consuming and can lead to variations in estimated volumes. Furthermore, there is a known lack of consensus regarding a universal lung parcellation protocol and expected normal total lung volume formulas. The lungs are also segmented as one label without parcellation into lobes. In terms of automation, to the best of our knowledge, there have been no reported works on multi-lobe segmentation for fetal lung MRI. This work introduces the first automated deep learning segmentation pipeline for multi-regional lung segmentation for 3D motion-corrected T2w fetal body images for normal anatomy and congenital diaphragmatic hernia cases. The protocol for parcellation into 5 standard lobes was defined in the population-averaged 3D atlas. It was then used to generate a multi-label training dataset including 104 normal anatomy controls and 45 congenital diaphragmatic hernia cases from 0.55T, 1.5T and 3T acquisition protocols. The performance of 3D Attention UNet network was evaluated on 18 cases and showed good results for normal lung anatomy with expectedly lower Dice values for the ipsilateral lung. In addition, we also produced normal lung volumetry growth charts from 290 0.55T and 3T controls. This is the first step towards automated multi-regional fetal lung analysis for 3D fetal MRI.

Self-supervised learning for MRI reconstruction: a review and new perspective.

Li X, Huang J, Sun G, Yang Z

pubmed logopapersJun 26 2025
To review the latest developments in self-supervised deep learning (DL) techniques for magnetic resonance imaging (MRI) reconstruction, emphasizing their potential to overcome the limitations of supervised methods dependent on fully sampled k-space data. While DL has significantly advanced MRI, supervised approaches require large amounts of fully sampled k-space data for training-a major limitation given the impracticality and expense of acquiring such data clinically. Self-supervised learning has emerged as a promising alternative, enabling model training using only undersampled k-space data, thereby enhancing feasibility and driving research interest. We conducted a comprehensive literature review to synthesize recent progress in self-supervised DL for MRI reconstruction. The analysis focused on methods and architectures designed to improve image quality, reduce scanning time, and address data scarcity challenges, drawing from peer-reviewed publications and technical innovations in the field. Self-supervised DL holds transformative potential for MRI reconstruction, offering solutions to data limitations while maintaining image quality and accelerating scans. Key challenges include robustness across diverse anatomies, standardization of validation, and clinical integration. Future research should prioritize hybrid methodologies, domain-specific adaptations, and rigorous clinical validation. This review consolidates advancements and unresolved issues, providing a foundation for next-generation medical imaging technologies.

Deep Learning Model for Automated Segmentation of Orbital Structures in MRI Images.

Bakhshaliyeva E, Reiner LN, Chelbi M, Nawabi J, Tietze A, Scheel M, Wattjes M, Dell'Orco A, Meddeb A

pubmed logopapersJun 26 2025
Magnetic resonance imaging (MRI) is a crucial tool for visualizing orbital structures and detecting eye pathologies. However, manual segmentation of orbital anatomy is challenging due to the complexity and variability of the structures. Recent advancements in deep learning (DL), particularly convolutional neural networks (CNNs), offer promising solutions for automated segmentation in medical imaging. This study aimed to train and evaluate a U-Net-based model for the automated segmentation of key orbital structures. This retrospective study included 117 patients with various orbital pathologies who underwent orbital MRI. Manual segmentation was performed on four anatomical structures: the ocular bulb, ocular tumors, retinal detachment, and the optic nerve. Following the UNet autoconfiguration by nnUNet, we conducted a five-fold cross-validation and evaluated the model's performances using Dice Similarity Coefficient (DSC) and Relative Absolute Volume Difference (RAVD) as metrics. nnU-Net achieved high segmentation performance for the ocular bulb (mean DSC: 0.931) and the optic nerve (mean DSC: 0.820). Segmentation of ocular tumors (mean DSC: 0.788) and retinal detachment (mean DSC: 0.550) showed greater variability, with performance declining in more challenging cases. Despite these challenges, the model achieved high detection rates, with ROC AUCs of 0.90 for ocular tumors and 0.78 for retinal detachment. This study demonstrates nnU-Net's capability for accurate segmentation of orbital structures, particularly the ocular bulb and optic nerve. However, challenges remain in the segmentation of tumors and retinal detachment due to variability and artifacts. Future improvements in deep learning models and broader, more diverse datasets may enhance segmentation performance, ultimately aiding in the diagnosis and treatment of orbital pathologies.

Improving Clinical Utility of Fetal Cine CMR Using Deep Learning Super-Resolution.

Vollbrecht TM, Hart C, Katemann C, Isaak A, Voigt MB, Pieper CC, Kuetting D, Geipel A, Strizek B, Luetkens JA

pubmed logopapersJun 26 2025
Fetal cardiovascular magnetic resonance is an emerging tool for prenatal congenital heart disease assessment, but long acquisition times and fetal movements limit its clinical use. This study evaluates the clinical utility of deep learning super-resolution reconstructions for rapidly acquired, low-resolution fetal cardiovascular magnetic resonance. This prospective study included participants with fetal congenital heart disease undergoing fetal cardiovascular magnetic resonance in the third trimester of pregnancy, with axial cine images acquired at normal resolution and low resolution. Low-resolution cine data was subsequently reconstructed using a deep learning super-resolution framework (cine<sub>DL</sub>). Acquisition times, apparent signal-to-noise ratio, contrast-to-noise ratio, and edge rise distance were assessed. Volumetry and functional analysis were performed. Qualitative image scores were rated on a 5-point Likert scale. Cardiovascular structures and pathological findings visible in cine<sub>DL</sub> images only were assessed. Statistical analysis included the Student paired <i>t</i> test and the Wilcoxon test. A total of 42 participants were included (median gestational age, 35.9 weeks [interquartile range (IQR), 35.1-36.4]). Cine<sub>DL</sub> acquisition was faster than cine images acquired at normal resolution (134±9.6 s versus 252±8.8 s; <i>P</i><0.001). Quantitative image quality metrics and image quality scores for cine<sub>DL</sub> were higher or comparable with those of cine images acquired at normal-resolution images (eg, fetal motion, 4.0 [IQR, 4.0-5.0] versus 4.0 [IQR, 3.0-4.0]; <i>P</i><0.001). Nonpatient-related artifacts (eg, backfolding) were more pronounced in Cine<sub>DL</sub> compared with cine images acquired at normal-resolution images (4.0 [IQR, 4.0-5.0] versus 5.0 [IQR, 3.0-4.0]; <i>P</i><0.001). Volumetry and functional results were comparable. Cine<sub>DL</sub> revealed additional structures in 10 of 42 fetuses (24%) and additional pathologies in 5 of 42 fetuses (12%), including partial anomalous pulmonary venous connection. Deep learning super-resolution reconstructions of low-resolution acquisitions shorten acquisition times and achieve diagnostic quality comparable with standard images, while being less sensitive to fetal bulk movements, leading to additional diagnostic findings. Therefore, deep learning super-resolution may improve the clinical utility of fetal cardiovascular magnetic resonance for accurate prenatal assessment of congenital heart disease.

Robust Deep Learning for Myocardial Scar Segmentation in Cardiac MRI with Noisy Labels

Aida Moafi, Danial Moafi, Evgeny M. Mirkes, Gerry P. McCann, Abbas S. Alatrany, Jayanth R. Arnold, Mostafa Mehdipour Ghazi

arxiv logopreprintJun 26 2025
The accurate segmentation of myocardial scars from cardiac MRI is essential for clinical assessment and treatment planning. In this study, we propose a robust deep-learning pipeline for fully automated myocardial scar detection and segmentation by fine-tuning state-of-the-art models. The method explicitly addresses challenges of label noise from semi-automatic annotations, data heterogeneity, and class imbalance through the use of Kullback-Leibler loss and extensive data augmentation. We evaluate the model's performance on both acute and chronic cases and demonstrate its ability to produce accurate and smooth segmentations despite noisy labels. In particular, our approach outperforms state-of-the-art models like nnU-Net and shows strong generalizability in an out-of-distribution test set, highlighting its robustness across various imaging conditions and clinical tasks. These results establish a reliable foundation for automated myocardial scar quantification and support the broader clinical adoption of deep learning in cardiac imaging.

Deep learning-based contour propagation in magnetic resonance imaging-guided radiotherapy of lung cancer patients.

Wei C, Eze C, Klaar R, Thorwarth D, Warda C, Taugner J, Hörner-Rieber J, Regnery S, Jaekel O, Weykamp F, Palacios MA, Marschner S, Corradini S, Belka C, Kurz C, Landry G, Rabe M

pubmed logopapersJun 26 2025
Fast and accurate organ-at-risk (OAR) and gross tumor volume (GTV) contour propagation methods are needed to improve the efficiency of magnetic resonance (MR) imaging-guided radiotherapy. We trained deformable image registration networks to accurately propagate contours from planning to fraction MR images.&#xD;Approach: Data from 140 stage 1-2 lung cancer patients treated at a 0.35T MR-Linac were split into 102/17/21 for training/validation/testing. Additionally, 18 central lung tumor patients, treated at a 0.35T MR-Linac externally, and 14 stage 3 lung cancer patients from a phase 1 clinical trial, treated at 0.35T or 1.5T MR-Linacs at three institutions, were used for external testing. Planning and fraction images were paired (490 pairs) for training. Two hybrid transformer-convolutional neural network TransMorph models with mean squared error (MSE), Dice similarity coefficient (DSC), and regularization losses (TM_{MSE+Dice}) or MSE and regularization losses (TM_{MSE}) were trained to deformably register planning to fraction images. The TransMorph models predicted diffeomorphic dense displacement fields. Multi-label images including seven thoracic OARs and the GTV were propagated to generate fraction segmentations. Model predictions were compared with contours obtained through B-spline, vendor registration and the auto-segmentation method nnUNet. Evaluation metrics included the DSC and Hausdorff distance percentiles (50th and 95th) against clinical contours.&#xD;Main results: TM_{MSE+Dice} and TM_{MSE} achieved mean OARs/GTV DSCs of 0.90/0.82 and 0.90/0.79 for the internal and 0.84/0.77 and 0.85/0.76 for the central lung tumor external test data. On stage 3 data, TM_{MSE+Dice} achieved mean OARs/GTV DSCs of 0.87/0.79 and 0.83/0.78 for the 0.35 T MR-Linac datasets, and 0.87/0.75 for the 1.5 T MR-Linac dataset. TM_{MSE+Dice} and TM_{MSE} had significantly higher geometric accuracy than other methods on external data. No significant difference between TM_{MSE+Dice} and TM_{MSE} was found.&#xD;Significance: TransMorph models achieved time-efficient segmentation of fraction MRIs with high geometrical accuracy and accurately segmented images obtained at different field strengths.
Page 11 of 68675 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.