Sort by:
Page 11 of 39382 results

Score-based Generative Diffusion Models to Synthesize Full-dose FDG Brain PET from MRI in Epilepsy Patients

Jiaqi Wu, Jiahong Ouyang, Farshad Moradi, Mohammad Mehdi Khalighi, Greg Zaharchuk

arxiv logopreprintJun 12 2025
Fluorodeoxyglucose (FDG) PET to evaluate patients with epilepsy is one of the most common applications for simultaneous PET/MRI, given the need to image both brain structure and metabolism, but is suboptimal due to the radiation dose in this young population. Little work has been done synthesizing diagnostic quality PET images from MRI data or MRI data with ultralow-dose PET using advanced generative AI methods, such as diffusion models, with attention to clinical evaluations tailored for the epilepsy population. Here we compared the performance of diffusion- and non-diffusion-based deep learning models for the MRI-to-PET image translation task for epilepsy imaging using simultaneous PET/MRI in 52 subjects (40 train/2 validate/10 hold-out test). We tested three different models: 2 score-based generative diffusion models (SGM-Karras Diffusion [SGM-KD] and SGM-variance preserving [SGM-VP]) and a Transformer-Unet. We report results on standard image processing metrics as well as clinically relevant metrics, including congruency measures (Congruence Index and Congruency Mean Absolute Error) that assess hemispheric metabolic asymmetry, which is a key part of the clinical analysis of these images. The SGM-KD produced the best qualitative and quantitative results when synthesizing PET purely from T1w and T2 FLAIR images with the least mean absolute error in whole-brain specific uptake value ratio (SUVR) and highest intraclass correlation coefficient. When 1% low-dose PET images are included in the inputs, all models improve significantly and are interchangeable for quantitative performance and visual quality. In summary, SGMs hold great potential for pure MRI-to-PET translation, while all 3 model types can synthesize full-dose FDG-PET accurately using MRI and ultralow-dose PET.

A Multi-Resolution Hybrid CNN-Transformer Network With Scale-Guided Attention for Medical Image Segmentation.

Zhu S, Li Y, Dai X, Mao T, Wei L, Yan Y

pubmed logopapersJun 11 2025
Medical image segmentation remains a challenging task due to the intricate nature of anatomical structures and the wide range of target sizes. In this paper, we propose a novel U -shaped segmentation network that integrates CNN and Transformer architectures to address these challenges. Specifically, our network architecture consists of three main components. In the encoder, we integrate an attention-guided multi-scale feature extraction module with a dual-path downsampling block to learn hierarchical features. The decoder employs an advanced feature aggregation and fusion module that effectively models inter-dependencies across different hierarchical levels. For the bottleneck, we explore multi-scale feature activation and multi-layer context Transformer modules to facilitate high-level semantic feature learning and global context modeling. Additionally, we implement a multi-resolution input-output strategy throughout the network to enrich feature representations and ensure fine-grained segmentation outputs across different scales. The experimental results on diverse multi-modal medical image datasets (ultrasound, gastrointestinal polyp, MR, and CT images) demonstrate that our approach can achieve superior performance over state-of-the-art methods in both quantitative measurements and qualitative assessments. The code is available at https://github.com/zsj0577/MSAGHNet.

Test-Time-Scaling for Zero-Shot Diagnosis with Visual-Language Reasoning

Ji Young Byun, Young-Jin Park, Navid Azizan, Rama Chellappa

arxiv logopreprintJun 11 2025
As a cornerstone of patient care, clinical decision-making significantly influences patient outcomes and can be enhanced by large language models (LLMs). Although LLMs have demonstrated remarkable performance, their application to visual question answering in medical imaging, particularly for reasoning-based diagnosis, remains largely unexplored. Furthermore, supervised fine-tuning for reasoning tasks is largely impractical due to limited data availability and high annotation costs. In this work, we introduce a zero-shot framework for reliable medical image diagnosis that enhances the reasoning capabilities of LLMs in clinical settings through test-time scaling. Given a medical image and a textual prompt, a vision-language model processes a medical image along with a corresponding textual prompt to generate multiple descriptions or interpretations of visual features. These interpretations are then fed to an LLM, where a test-time scaling strategy consolidates multiple candidate outputs into a reliable final diagnosis. We evaluate our approach across various medical imaging modalities -- including radiology, ophthalmology, and histopathology -- and demonstrate that the proposed test-time scaling strategy enhances diagnostic accuracy for both our and baseline methods. Additionally, we provide an empirical analysis showing that the proposed approach, which allows unbiased prompting in the first stage, improves the reliability of LLM-generated diagnoses and enhances classification accuracy.

ADAgent: LLM Agent for Alzheimer's Disease Analysis with Collaborative Coordinator

Wenlong Hou, Gangqian Yang, Ye Du, Yeung Lau, Lihao Liu, Junjun He, Ling Long, Shujun Wang

arxiv logopreprintJun 11 2025
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease. Early and precise diagnosis of AD is crucial for timely intervention and treatment planning to alleviate the progressive neurodegeneration. However, most existing methods rely on single-modality data, which contrasts with the multifaceted approach used by medical experts. While some deep learning approaches process multi-modal data, they are limited to specific tasks with a small set of input modalities and cannot handle arbitrary combinations. This highlights the need for a system that can address diverse AD-related tasks, process multi-modal or missing input, and integrate multiple advanced methods for improved performance. In this paper, we propose ADAgent, the first specialized AI agent for AD analysis, built on a large language model (LLM) to address user queries and support decision-making. ADAgent integrates a reasoning engine, specialized medical tools, and a collaborative outcome coordinator to facilitate multi-modal diagnosis and prognosis tasks in AD. Extensive experiments demonstrate that ADAgent outperforms SOTA methods, achieving significant improvements in accuracy, including a 2.7% increase in multi-modal diagnosis, a 0.7% improvement in multi-modal prognosis, and enhancements in MRI and PET diagnosis tasks.

ADAgent: LLM Agent for Alzheimer's Disease Analysis with Collaborative Coordinator

Wenlong Hou, Guangqian Yang, Ye Du, Yeung Lau, Lihao Liu, Junjun He, Ling Long, Shujun Wang

arxiv logopreprintJun 11 2025
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease. Early and precise diagnosis of AD is crucial for timely intervention and treatment planning to alleviate the progressive neurodegeneration. However, most existing methods rely on single-modality data, which contrasts with the multifaceted approach used by medical experts. While some deep learning approaches process multi-modal data, they are limited to specific tasks with a small set of input modalities and cannot handle arbitrary combinations. This highlights the need for a system that can address diverse AD-related tasks, process multi-modal or missing input, and integrate multiple advanced methods for improved performance. In this paper, we propose ADAgent, the first specialized AI agent for AD analysis, built on a large language model (LLM) to address user queries and support decision-making. ADAgent integrates a reasoning engine, specialized medical tools, and a collaborative outcome coordinator to facilitate multi-modal diagnosis and prognosis tasks in AD. Extensive experiments demonstrate that ADAgent outperforms SOTA methods, achieving significant improvements in accuracy, including a 2.7% increase in multi-modal diagnosis, a 0.7% improvement in multi-modal prognosis, and enhancements in MRI and PET diagnosis tasks.

Machine learning is changing osteoporosis detection: an integrative review.

Zhang Y, Ma M, Huang X, Liu J, Tian C, Duan Z, Fu H, Huang L, Geng B

pubmed logopapersJun 10 2025
Machine learning drives osteoporosis detection and screening with higher clinical accuracy and accessibility than traditional osteoporosis screening tools. This review takes a step-by-step view of machine learning for osteoporosis detection, providing insights into today's osteoporosis detection and the outlook for the future. The early diagnosis and risk detection of osteoporosis have always been crucial and challenging issues in the medical field. With the in-depth application of artificial intelligence technology, especially machine learning technology in the medical field, significant breakthroughs have been made in the application of early diagnosis and risk detection of osteoporosis. Machine learning is a multidimensional technical system that encompasses a wide variety of algorithm types. Machine learning algorithms have become relatively mature and developed over many years in medical data processing. They possess stable and accurate detection performance, laying a solid foundation for the detection and diagnosis of osteoporosis. As an essential part of the machine learning technical system, deep-learning algorithms are complex algorithm models based on artificial neural networks. Due to their robust image recognition and feature extraction capabilities, deep learning algorithms have become increasingly mature in the early diagnosis and risk assessment of osteoporosis in recent years, opening new ideas and approaches for the early and accurate diagnosis and risk detection of osteoporosis. This paper reviewed the latest research over the past decade, ranging from relatively basic and widely adopted machine learning algorithms combined with clinical data to more advanced deep learning techniques integrated with imaging data such as X-ray, CT, and MRI. By analyzing the application of algorithms at different stages, we found that these basic machine learning algorithms performed well when dealing with single structured data but encountered limitations when handling high-dimensional and unstructured imaging data. On the other hand, deep learning can significantly improve detection accuracy. It does this by automatically extracting image features, especially in image histological analysis. However, it faces challenges. These include the "black-box" problem, heavy reliance on large amounts of labeled data, and difficulties in clinical interpretability. These issues highlighted the importance of model interpretability in future machine learning research. Finally, we expect to develop a predictive model in the future that combines multimodal data (such as clinical indicators, blood biochemical indicators, imaging data, and genetic data) integrated with electronic health records and machine learning techniques. This model aims to present a skeletal health monitoring system that is highly accessible, personalized, convenient, and efficient, furthering the early detection and prevention of osteoporosis.

SSS: Semi-Supervised SAM-2 with Efficient Prompting for Medical Imaging Segmentation

Hongjie Zhu, Xiwei Liu, Rundong Xue, Zeyu Zhang, Yong Xu, Daji Ergu, Ying Cai, Yang Zhao

arxiv logopreprintJun 10 2025
In the era of information explosion, efficiently leveraging large-scale unlabeled data while minimizing the reliance on high-quality pixel-level annotations remains a critical challenge in the field of medical imaging. Semi-supervised learning (SSL) enhances the utilization of unlabeled data by facilitating knowledge transfer, significantly improving the performance of fully supervised models and emerging as a highly promising research direction in medical image analysis. Inspired by the ability of Vision Foundation Models (e.g., SAM-2) to provide rich prior knowledge, we propose SSS (Semi-Supervised SAM-2), a novel approach that leverages SAM-2's robust feature extraction capabilities to uncover latent knowledge in unlabeled medical images, thus effectively enhancing feature support for fully supervised medical image segmentation. Specifically, building upon the single-stream "weak-to-strong" consistency regularization framework, this paper introduces a Discriminative Feature Enhancement (DFE) mechanism to further explore the feature discrepancies introduced by various data augmentation strategies across multiple views. By leveraging feature similarity and dissimilarity across multi-scale augmentation techniques, the method reconstructs and models the features, thereby effectively optimizing the salient regions. Furthermore, a prompt generator is developed that integrates Physical Constraints with a Sliding Window (PCSW) mechanism to generate input prompts for unlabeled data, fulfilling SAM-2's requirement for additional prompts. Extensive experiments demonstrate the superiority of the proposed method for semi-supervised medical image segmentation on two multi-label datasets, i.e., ACDC and BHSD. Notably, SSS achieves an average Dice score of 53.15 on BHSD, surpassing the previous state-of-the-art method by +3.65 Dice. Code will be available at https://github.com/AIGeeksGroup/SSS.

DIsoN: Decentralized Isolation Networks for Out-of-Distribution Detection in Medical Imaging

Felix Wagner, Pramit Saha, Harry Anthony, J. Alison Noble, Konstantinos Kamnitsas

arxiv logopreprintJun 10 2025
Safe deployment of machine learning (ML) models in safety-critical domains such as medical imaging requires detecting inputs with characteristics not seen during training, known as out-of-distribution (OOD) detection, to prevent unreliable predictions. Effective OOD detection after deployment could benefit from access to the training data, enabling direct comparison between test samples and the training data distribution to identify differences. State-of-the-art OOD detection methods, however, either discard training data after deployment or assume that test samples and training data are centrally stored together, an assumption that rarely holds in real-world settings. This is because shipping training data with the deployed model is usually impossible due to the size of training databases, as well as proprietary or privacy constraints. We introduce the Isolation Network, an OOD detection framework that quantifies the difficulty of separating a target test sample from the training data by solving a binary classification task. We then propose Decentralized Isolation Networks (DIsoN), which enables the comparison of training and test data when data-sharing is impossible, by exchanging only model parameters between the remote computational nodes of training and deployment. We further extend DIsoN with class-conditioning, comparing a target sample solely with training data of its predicted class. We evaluate DIsoN on four medical imaging datasets (dermatology, chest X-ray, breast ultrasound, histopathology) across 12 OOD detection tasks. DIsoN performs favorably against existing methods while respecting data-privacy. This decentralized OOD detection framework opens the way for a new type of service that ML developers could provide along with their models: providing remote, secure utilization of their training data for OOD detection services. Code will be available upon acceptance at: *****

MedMoE: Modality-Specialized Mixture of Experts for Medical Vision-Language Understanding

Shivang Chopra, Lingchao Mao, Gabriela Sanchez-Rodriguez, Andrew J Feola, Jing Li, Zsolt Kira

arxiv logopreprintJun 10 2025
Different medical imaging modalities capture diagnostic information at varying spatial resolutions, from coarse global patterns to fine-grained localized structures. However, most existing vision-language frameworks in the medical domain apply a uniform strategy for local feature extraction, overlooking the modality-specific demands. In this work, we present MedMoE, a modular and extensible vision-language processing framework that dynamically adapts visual representation based on the diagnostic context. MedMoE incorporates a Mixture-of-Experts (MoE) module conditioned on the report type, which routes multi-scale image features through specialized expert branches trained to capture modality-specific visual semantics. These experts operate over feature pyramids derived from a Swin Transformer backbone, enabling spatially adaptive attention to clinically relevant regions. This framework produces localized visual representations aligned with textual descriptions, without requiring modality-specific supervision at inference. Empirical results on diverse medical benchmarks demonstrate that MedMoE improves alignment and retrieval performance across imaging modalities, underscoring the value of modality-specialized visual representations in clinical vision-language systems.

Empirical evaluation of artificial intelligence distillation techniques for ascertaining cancer outcomes from electronic health records.

Riaz IB, Naqvi SAA, Ashraf N, Harris GJ, Kehl KL

pubmed logopapersJun 10 2025
Phenotypic information for cancer research is embedded in unstructured electronic health records (EHR), requiring effort to extract. Deep learning models can automate this but face scalability issues due to privacy concerns. We evaluated techniques for applying a teacher-student framework to extract longitudinal clinical outcomes from EHRs. We focused on the challenging task of ascertaining two cancer outcomes-overall response and progression according to Response Evaluation Criteria in Solid Tumors (RECIST)-from free-text radiology reports. Teacher models with hierarchical Transformer architecture were trained on data from Dana-Farber Cancer Institute (DFCI). These models labeled public datasets (MIMIC-IV, Wiki-text) and GPT-4-generated synthetic data. "Student" models were then trained to mimic the teachers' predictions. DFCI "teacher" models achieved high performance, and student models trained on MIMIC-IV data showed comparable results, demonstrating effective knowledge transfer. However, student models trained on Wiki-text and synthetic data performed worse, emphasizing the need for in-domain public datasets for model distillation.
Page 11 of 39382 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.