Sort by:
Page 103 of 1411410 results

Automated Vessel Occlusion Software in Acute Ischemic Stroke: Pearls and Pitfalls.

Aziz YN, Sriwastwa A, Nael K, Harker P, Mistry EA, Khatri P, Chatterjee AR, Heit JJ, Jadhav A, Yedavalli V, Vagal AS

pubmed logopapersJun 9 2025
Software programs leveraging artificial intelligence to detect vessel occlusions are now widely available to aid in stroke triage. Given their proprietary use, there is a surprising lack of information regarding how the software works, who is using the software, and their performance in an unbiased real-world setting. In this educational review of automated vessel occlusion software, we discuss emerging evidence of their utility, underlying algorithms, real-world diagnostic performance, and limitations. The intended audience includes specialists in stroke care in neurology, emergency medicine, radiology, and neurosurgery. Practical tips for onboarding and utilization of this technology are provided based on the multidisciplinary experience of the authorship team.

MHASegNet: A multi-scale hybrid aggregation network of segmenting coronary artery from CCTA images.

Li S, Wu Y, Jiang B, Liu L, Zhang T, Sun Y, Hou J, Monkam P, Qian W, Qi S

pubmed logopapersJun 9 2025
Segmentation of coronary arteries in Coronary Computed Tomography Angiography (CCTA) images is crucial for diagnosing coronary artery disease (CAD), but remains challenging due to small artery size, uneven contrast distribution, and issues like over-segmentation or omission. The aim of this study is to improve coronary artery segmentation in CCTA images using both conventional and deep learning techniques. We propose MHASegNet, a lightweight network for coronary artery segmentation, combined with a tailored refinement method. MHASegNet employs multi-scale hybrid attention to capture global and local features, and integrates a 3D context anchor attention module to focus on key coronary artery structures while suppressing background noise. An iterative, region-growth-based refinement addresses crown breaks and reduces false alarms. We evaluated the method on an in-house dataset of 90 subjects and two public datasets with 1060 subjects. MHASegNet, coupled with tailored refinement, outperforms state-of-the-art algorithms, achieving a Dice Similarity Coefficient (DSC) of 0.867 on the in-house dataset, 0.875 on the ASOCA dataset, and 0.827 on the ImageCAS dataset. The tailored refinement significantly reduces false positives and resolves most discontinuities, even for other networks. MHASegNet and the tailored refinement may aid in diagnosing and quantifying CAD following further validation.

Differentiating Bacterial and Non-Bacterial Pneumonia on Chest CT Using Multi-Plane Features and Clinical Biomarkers.

Song L, Zhan Y, Li L, Li X, Wu Y, Zhao M, Li Z, Ren G, Cai J

pubmed logopapersJun 9 2025
Timely and accurate classification of bacterial pneumonia (BP) is essential for guiding antibiotic therapy. However, distinguishing BP from non-bacterial pneumonia (NBP) using computed tomography (CT) is challenging due to overlapping imaging features and limited biomarker specificity, often leading to delayed or empirical treatment. This study aimed to develop and evaluate MPMT-Pneumo, a multi-plane, multi-modal deep learning model, to improve BP versus NBP differentiation. A total of 384 patients with microbiologically confirmed pneumonia (239 BP, 145 NBP) from two hospitals were included and divided into training and test sets. MPMT-Pneumo utilized a hybrid CNN-Transformer architecture to integrate features from axial, coronal, sagittal CT views and four routine inflammatory biomarkers (WBC, ANC, CRP, PCT). Poly Focal Loss addressed class imbalance during training. Performance was evaluated using Area Under the Curve (AUC), accuracy, and sensitivity on the test set. MPMT-Pneumo was benchmarked against recent deep learning models, biomarker-only models, and clinical radiologists' CT interpretations. Ablation studies assessed component contributions. MPMT-Pneumo achieved an AUC of 0.874, accuracy of 0.852, and sensitivity of 0.894 on the test set, outperforming baseline deep learning models and biomarker-only models. Sensitivity for BP detection surpassed that of less experienced radiologists and was comparable to the most experienced. Ablation studies confirmed the importance of both multi-plane imaging and biomarkers. MPMT-Pneumo provides a clinically applicable solution for BP classification and shows great potential in improving diagnostic accuracy and promoting more rational antibiotic use in clinical practice.

Snap-and-tune: combining deep learning and test-time optimization for high-fidelity cardiovascular volumetric meshing

Daniel H. Pak, Shubh Thaker, Kyle Baylous, Xiaoran Zhang, Danny Bluestein, James S. Duncan

arxiv logopreprintJun 9 2025
High-quality volumetric meshing from medical images is a key bottleneck for physics-based simulations in personalized medicine. For volumetric meshing of complex medical structures, recent studies have often utilized deep learning (DL)-based template deformation approaches to enable fast test-time generation with high spatial accuracy. However, these approaches still exhibit limitations, such as limited flexibility at high-curvature areas and unrealistic inter-part distances. In this study, we introduce a simple yet effective snap-and-tune strategy that sequentially applies DL and test-time optimization, which combines fast initial shape fitting with more detailed sample-specific mesh corrections. Our method provides significant improvements in both spatial accuracy and mesh quality, while being fully automated and requiring no additional training labels. Finally, we demonstrate the versatility and usefulness of our newly generated meshes via solid mechanics simulations in two different software platforms. Our code is available at https://github.com/danpak94/Deep-Cardiac-Volumetric-Mesh.

Deep learning-based post-hoc noise reduction improves quarter-radiation-dose coronary CT angiography.

Morikawa T, Nishii T, Tanabe Y, Yoshida K, Toshimori W, Fukuyama N, Toritani H, Suekuni H, Fukuda T, Kido T

pubmed logopapersJun 9 2025
To evaluate the impact of deep learning-based post-hoc noise reduction (DLNR) on image quality, coronary artery disease reporting and data system (CAD-RADS) assessment, and diagnostic performance in quarter-dose versus full-dose coronary CT angiography (CCTA) on external datasets. We retrospectively reviewed 221 patients who underwent retrospective electrocardiogram-gated CCTA in 2022-2023. Using dose modulation, either mid-diastole or end-systole was scanned at full dose depending on heart rates, and the other phase at quarter dose. Only patients with motion-free coronaries in both phases were included. Images were acquired using iterative reconstruction, and a residual dense network trained on external datasets denoised the quarter-dose images. Image quality was assessed by comparing noise levels using Tukey's test. Two radiologists independently assessed CAD-RADS, with agreement to full-dose images evaluated by Cohen's kappa. Diagnostic performance for significant stenosis referencing full-dose images was compared between quarter-dose and denoised images by the area under the receiver operating characteristic curve (AUC) using the DeLong test. Among 40 cases (age, 71 ± 7 years; 24 males), DLNR reduced noise from 37 to 18 HU (P < 0.001) in quarter-dose CCTA (full-dose images: 22 HU), and improved CAD-RADS agreement from moderate (0.60 [95 % CI: 0.41-0.78]) to excellent (0.82 [95 % CI: 0.66-0.94]). Denoised images demonstrated a superior AUC (0.97 [95 % CI: 0.95-1.00]) for diagnosing significant stenosis compared with original quarter-dose images (0.93 [95 % CI: 0.89-0.98]; P = 0.032). DLNR for quarter-dose CCTA significantly improved image quality, CAD-RADS agreement, and diagnostic performance for detecting significant stenosis referencing full-dose images.

Multi-task and multi-scale attention network for lymph node metastasis prediction in esophageal cancer.

Yi Y, Wang J, Li Z, Wang L, Ding X, Zhou Q, Huang Y, Li B

pubmed logopapersJun 9 2025
The accurate diagnosis of lymph node metastasis in esophageal squamous cell carcinoma is crucial in the treatment workflow, and the process is often time-consuming for clinicians. Recent deep learning models predicting whether lymph nodes are affected by cancer in esophageal cancer cases suffer from challenging node delineation and hence gain poor diagnosis accuracy. This paper proposes an innovative multi-task and multi-scale attention network (M <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>2</mn></mmultiscripts> </math> ANet) to predict lymph node metastasis precisely. The network softly expands the regions of the node mask and subsequently utilizes the expanded mask to aggregate image features, thereby amplifying the node contexts. It additionally proposes a two-branch training strategy that compels the model to simultaneously predict metastasis probability and node masks, fostering a more comprehensive learning process. The node metastasis prediction performance has been evaluated on a self-collected dataset with 177 patients. Our model finally achieves a competitive accuracy of 83.7% on the test set comprising 577 nodes. With the adaptability to intricate patterns and ability to handle data variations, M <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>2</mn></mmultiscripts> </math> ANet emerges as a promising tool for robust and comprehensive lymph node metastasis prediction in medical image analysis.

Bi-regional and bi-phasic automated machine learning radiomics for defining metastasis to lesser curvature lymph node stations in gastric cancer.

Huang H, Wang S, Deng J, Ye Z, Li H, He B, Fang M, Zhang N, Liu J, Dong D, Liang H, Li G, Tian J, Hu Y

pubmed logopapersJun 8 2025
Lymph node metastasis (LNM) is the primary metastatic mode in gastric cancer (GC), with frequent occurrences in lesser curvature. This study aims to establish a radiomic model to predict the metastatic status of lymph nodes in the lesser curvature for GC. We retrospectively collected data from 939 gastric cancer patients who underwent gastrectomy and D2 lymphadenectomy across two centers. Both the primary lesion and the lesser curvature region were segmented as representative region of interests (ROIs). The combination of bi-regional and bi-phasic CT imaging features were used to build a hybrid radiomic model to predict LNM in the lesser curvature. And the model was validated internally and externally. Further, the potential generalization ability of the hybrid model was investigated in predicting the metastasis status in the supra-pancreatic area. The hybrid model yielded substantially higher performance with AUCs of 0.847 (95% CI, 0.770-0.924) and 0.833 (95% CI, 0.800-0.867) in the two independent test cohorts, compared to the single regional and phasic models. Additionally, the hybrid model achieved AUCs ranging from 0.678 to 0.761 in the prediction of LNM in supra-pancreatic area, showing the potential generalization performance. The CT imaging features of primary tumor and adjacent tissues are significantly associated with LNM. And our as-developed model showed great diagnostic performance and might be of great application in the individual treatment of GC.

Dose to circulating blood in intensity-modulated total body irradiation, total marrow irradiation, and total marrow and lymphoid irradiation.

Guo B, Cherian S, Murphy ES, Sauter CS, Sobecks RM, Rotz S, Hanna R, Scott JG, Xia P

pubmed logopapersJun 8 2025
Multi-isocentric intensity-modulated (IM) total body irradiation (TBI), total marrow irradiation (TMI), and total marrow and lymphoid irradiation (TMLI) are gaining popularity. A question arises on the impact of the interplay between blood circulation and dynamic delivery on blood dose. This study answers the question by introducing a new whole-body blood circulation modeling technique. A whole-body CT with intravenous contrast was used to develop the blood circulation model. Fifteen organs and tissues, heart chambers, and great vessels were segmented using a deep-learning-based auto-contouring software. The main blood vessels were segmented using an in-house algorithm. Blood density, velocity, time-to-heart, and perfusion distributions were derived for systole, diastole, and portal circulations and used to simulate trajectories of blood particles during delivery. With the same prescription of 12 Gy in 8 fractions, doses to circulating blood were calculated for three plans: (1) an IM-TBI plan prescribing uniform dose to the whole body while reducing lung and kidney doses; (2) a TMI plan treating all bones; and (3) a TMLI plan treating all bones, major lymph nodes, and spleen; TMI and TMLI plans were optimized to reduce doses to non-target tissue. Circulating blood received 1.57 ± 0.43 Gy, 1.04 ± 0.32 Gy, and 1.09 ± 0.32 Gy in one fraction and 12.60 ± 1.21 Gy, 8.34 ± 0.88 Gy, and 8.71 ± 0.92 Gy in 8 fractions in IM-TBI, TMI, and TMLI, respectively. The interplay effect of blood motion with IM delivery did not change the mean dose, but changed the dose heterogeneity of the circulating blood. Fractionation reduced the blood dose heterogeneity. A novel whole-body blood circulating model was developed based on patient-specific anatomy and realistic blood dynamics, concentration, and perfusion. Using the blood circulation model, we developed a dosimetry tool for circulating blood in IM-TBI, TMI, and TMLI.

A Narrative Review on Large AI Models in Lung Cancer Screening, Diagnosis, and Treatment Planning

Jiachen Zhong, Yiting Wang, Di Zhu, Ziwei Wang

arxiv logopreprintJun 8 2025
Lung cancer remains one of the most prevalent and fatal diseases worldwide, demanding accurate and timely diagnosis and treatment. Recent advancements in large AI models have significantly enhanced medical image understanding and clinical decision-making. This review systematically surveys the state-of-the-art in applying large AI models to lung cancer screening, diagnosis, prognosis, and treatment. We categorize existing models into modality-specific encoders, encoder-decoder frameworks, and joint encoder architectures, highlighting key examples such as CLIP, BLIP, Flamingo, BioViL-T, and GLoRIA. We further examine their performance in multimodal learning tasks using benchmark datasets like LIDC-IDRI, NLST, and MIMIC-CXR. Applications span pulmonary nodule detection, gene mutation prediction, multi-omics integration, and personalized treatment planning, with emerging evidence of clinical deployment and validation. Finally, we discuss current limitations in generalizability, interpretability, and regulatory compliance, proposing future directions for building scalable, explainable, and clinically integrated AI systems. Our review underscores the transformative potential of large AI models to personalize and optimize lung cancer care.

Automated transcatheter heart valve 4DCT-based deformation assessment throughout the cardiac cycle: Towards enhanced long-term durability.

Busto L, Veiga C, González-Nóvoa JA, Campanioni S, Martínez C, Juan-Salvadores P, Jiménez V, Suárez S, López-Campos JÁ, Segade A, Alba-Castro JL, Kütting M, Baz JA, Íñiguez A

pubmed logopapersJun 7 2025
Transcatheter heart valve (THV) durability is a critical concern, and its deformation may influence long-term performance. Current assessments rely on CT-based single-phase measurements and require a tedious analysis process, potentially overlooking deformation dynamics throughout the cardiac cycle. A fully automated artificial intelligence-based method was developed to assess THV deformation in post-transcatheter aortic valve implantation (TAVI) 4DCT scans. The approach involves segmenting the THV, extracting orthogonal cross-sections along its axis, fitting ellipses to these cross-sections, and computing eccentricity to analyze deformation over the cardiac cycle. The method was evaluated in 21 TAVI patients with different self-expandable THV models, using one post-TAVI 4DCT series per patient. The THV inflow level exhibited the greatest eccentricity variations (0.35-0.69 among patients with the same THV model at end-diastole). Additionally, eccentricity varied throughout the cardiac cycle (0.23-0.57), highlighting the limitations of single-phase assessments in characterizing THV deformation. This method enables automated THV deformation assessment based on cross-sectional eccentricity. Significant differences were observed at the inflow level, and cyclic variations suggest that full cardiac cycle analysis provides a more comprehensive evaluation than single-phase measurements. This approach may aid in optimizing THV durability and function while preventing related complications.
Page 103 of 1411410 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.