MHASegNet: A multi-scale hybrid aggregation network of segmenting coronary artery from CCTA images.
Authors
Affiliations (4)
Affiliations (4)
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
- School of Health Management, China Medical University, Shenyang, China.
- Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China.
Abstract
Segmentation of coronary arteries in Coronary Computed Tomography Angiography (CCTA) images is crucial for diagnosing coronary artery disease (CAD), but remains challenging due to small artery size, uneven contrast distribution, and issues like over-segmentation or omission. The aim of this study is to improve coronary artery segmentation in CCTA images using both conventional and deep learning techniques. We propose MHASegNet, a lightweight network for coronary artery segmentation, combined with a tailored refinement method. MHASegNet employs multi-scale hybrid attention to capture global and local features, and integrates a 3D context anchor attention module to focus on key coronary artery structures while suppressing background noise. An iterative, region-growth-based refinement addresses crown breaks and reduces false alarms. We evaluated the method on an in-house dataset of 90 subjects and two public datasets with 1060 subjects. MHASegNet, coupled with tailored refinement, outperforms state-of-the-art algorithms, achieving a Dice Similarity Coefficient (DSC) of 0.867 on the in-house dataset, 0.875 on the ASOCA dataset, and 0.827 on the ImageCAS dataset. The tailored refinement significantly reduces false positives and resolves most discontinuities, even for other networks. MHASegNet and the tailored refinement may aid in diagnosing and quantifying CAD following further validation.