Sort by:
Page 101 of 1191186 results

Pulse Pressure, White Matter Hyperintensities, and Cognition: Mediating Effects Across the Adult Lifespan.

Hannan J, Newman-Norlund S, Busby N, Wilson SC, Newman-Norlund R, Rorden C, Fridriksson J, Bonilha L, Riccardi N

pubmed logopapersMay 25 2025
To investigate whether pulse pressure or mean arterial pressure mediates the relationship between age and white matter hyperintensity load and to examine the mediating effect of white matter hyperintensities on cognition. Demographic information, blood pressure, current medication lists, and Montreal Cognitive Assessment scores for 231 stroke- and dementia-free adults were retrospectively obtained from the Aging Brain Cohort study. Total WMH load was determined from T2-FLAIR magnetic resonance scans using the TrUE-Net deep learning tool for white matter segmentation. In separate models, we used mediation analysis to assess whether pulse pressure or MAP mediates the relationship between age and total white matter hyperintensity load, controlling for cardiovascular confounds. We also assessed whether white matter hyperintensity load mediated the relationship between age and cognitive scores. Pulse pressure, but not mean arterial pressure, significantly mediated the relationship between age and white matter hyperintensity load. White matter hyperintensity load partially mediated the relationship between age and Montreal Cognitive Assessment score. Our results indicate that pulse pressure, but not mean arterial pressure, is mechanistically associated with age-related accumulation of white matter hyperintensities, independent of other cardiovascular risk factors. White matter hyperintensity load was a mediator of cognitive scores across the adult lifespan. Effective management of pulse pressure may be especially important for maintenance of brain health and cognition.

Sex-related differences and associated transcriptional signatures in the brain ventricular system and cerebrospinal fluid development in full-term neonates.

Sun Y, Fu C, Gu L, Zhao H, Feng Y, Jin C

pubmed logopapersMay 25 2025
The cerebrospinal fluid (CSF) is known to serve as a unique environment for neurodevelopment, with specific proteins secreted by epithelial cells of the choroid plexus (CP) playing crucial roles in cortical development and cell differentiation. Sex-related differences in the brain in early life have been widely identified, but few studies have investigated the neonatal CSF system and associated transcriptional signatures. This study included 75 full-term neonates [44 males and 31 females; gestational age (GA) = 37-42 weeks] without significant MRI abnormalities from the dHCP (developing Human Connectome Project) database. Deep-learning automated segmentation was used to measure various metrics of the brain ventricular system and CSF. Sex-related differences and relationships with postnatal age were analyzed by linear regression. Correlations between the CP and CSF space metrics were also examined. LASSO regression was further applied to identify the key genes contributing to the sex-related CSF system differences by using regional gene expression data from the Allen Human Brain Atlas. Right lateral ventricles [2.42 ± 0.98 vs. 2.04 ± 0.45 cm3 (mean ± standard deviation), p = 0.036] and right CP (0.16 ± 0.07 vs. 0.13 ± 0.04 cm3, p = 0.024) were larger in males, with a stronger volume correlation (male/female correlation coefficients r: 0.798 vs. 0.649, p < 1 × 10<sup>- 4</sup>). No difference was found in total CSF volume, while peripheral CSF (male/female β: 1.218 vs. 1.064) and CP (male/female β: 0.008 vs. 0.005) exhibited relatively faster growth in males. Additionally, the volumes of the lateral ventricular system, third ventricle, peripheral CSF, and total CSF were significantly correlated with their corresponding CP volume (r: 0.362 to 0.799, p < 0.05). DERL2 (Degradation in Endoplasmic Reticulum Protein 2) (r = 0.1319) and MRPL48 (Mitochondrial Large Ribosomal Subunit Protein) (r=-0.0370) were identified as potential key genes associated with sex-related differences in CSF system. Male neonates present larger volumes and faster growth of the right lateral ventricle, likely linked to corresponding CP volume and growth pattern. The downregulation of DERL2 and upregulation of MRPL48 may contribute to these sex-related variations in the CSF system, suggesting a molecular basis for sex-specific brain development.

Classifying athletes and non-athletes by differences in spontaneous brain activity: a machine learning and fMRI study.

Peng L, Xu L, Zhang Z, Wang Z, Zhong X, Wang L, Peng Z, Xu R, Shao Y

pubmed logopapersMay 24 2025
Different types of sports training can induce distinct changes in brain activity and function; however, it remains unclear if there are commonalities across various sports disciplines. Moreover, the relationship between these brain activity alterations and the duration of sports training requires further investigation. This study employed resting-state functional magnetic resonance imaging (rs-fMRI) techniques to analyze spontaneous brain activity using the amplitude of low-frequency fluctuations (ALFF) and fractional amplitude of low-frequency fluctuations (fALFF) in 86 highly trained athletes compared to 74 age- and gender-matched non-athletes. Our findings revealed significantly higher ALFF values in the Insula_R (Right Insula), OFCpost_R (Right Posterior orbital gyrus), and OFClat_R (Right Lateral orbital gyrus) in athletes compared to controls, whereas fALFF in the Postcentral_R (Right Postcentral) was notably higher in controls. Additionally, we identified a significant negative correlation between fALFF values in the Postcentral_R of athletes and their years of professional training. Utilizing machine learning algorithms, we achieved accurate classification of brain activity patterns distinguishing athletes from non-athletes with over 96.97% accuracy. These results suggest that the functional reorganization observed in athletes' brains may signify an adaptation to prolonged training, potentially reflecting enhanced processing efficiency. This study emphasizes the importance of examining the impact of long-term sports training on brain function, which could influence cognitive and sensory systems crucial for optimal athletic performance. Furthermore, machine learning methods could be used in the future to select athletes based on differences in brain activity.

Symbolic and hybrid AI for brain tissue segmentation using spatial model checking.

Belmonte G, Ciancia V, Massink M

pubmed logopapersMay 24 2025
Segmentation of 3D medical images, and brain segmentation in particular, is an important topic in neuroimaging and in radiotherapy. Overcoming the current, time consuming, practise of manual delineation of brain tumours and providing an accurate, explainable, and replicable method of segmentation of the tumour area and related tissues is therefore an open research challenge. In this paper, we first propose a novel symbolic approach to brain segmentation and delineation of brain lesions based on spatial model checking. This method has its foundations in the theory of closure spaces, a generalisation of topological spaces, and spatial logics. At its core is a high-level declarative logic language for image analysis, ImgQL, and an efficient spatial model checker, VoxLogicA, exploiting state-of-the-art image analysis libraries in its model checking algorithm. We then illustrate how this technique can be combined with Machine Learning techniques leading to a hybrid AI approach that provides accurate and explainable segmentation results. We show the results of the application of the symbolic approach on several public datasets with 3D magnetic resonance (MR) images. Three datasets are provided by the 2017, 2019 and 2020 international MICCAI BraTS Challenges with 210, 259 and 293 MR images, respectively, and the fourth is the BrainWeb dataset with 20 (synthetic) 3D patient images of the normal brain. We then apply the hybrid AI method to the BraTS 2020 training set. Our segmentation results are shown to be in line with the state-of-the-art with respect to other recent approaches, both from the accuracy point of view as well as from the view of computational efficiency, but with the advantage of them being explainable.

MATI: A GPU-accelerated toolbox for microstructural diffusion MRI simulation and data fitting with a graphical user interface.

Xu J, Devan SP, Shi D, Pamulaparthi A, Yan N, Zu Z, Smith DS, Harkins KD, Gore JC, Jiang X

pubmed logopapersMay 24 2025
To introduce MATI (Microstructural Analysis Toolbox for Imaging), a versatile MATLAB-based toolbox that combines both simulation and data fitting capabilities for microstructural dMRI research. MATI provides a user-friendly, graphical user interface that enables researchers, including those without much programming experience, to perform advanced simulations and data analyses for microstructural MRI research. For simulation, MATI supports arbitrary microstructural tissues and pulse sequences. For data fitting, MATI supports a range of fitting methods, including traditional non-linear least squares, Bayesian approaches, machine learning, and dictionary matching methods, allowing users to tailor analyses based on specific research needs. Optimized with vectorized matrix operations and high-performance numerical libraries, MATI achieves high computational efficiency, enabling rapid simulations and data fitting on CPU and GPU hardware. While designed for microstructural dMRI, MATI's generalized framework can be extended to other imaging methods, making it a flexible and scalable tool for quantitative MRI research. MATI offers a significant step toward translating advanced microstructural MRI techniques into clinical applications.

Relational Bi-level aggregation graph convolutional network with dynamic graph learning and puzzle optimization for Alzheimer's classification.

Raajasree K, Jaichandran R

pubmed logopapersMay 24 2025
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive cognitive decline, necessitating early diagnosis for effective treatment. This study presents the Relational Bi-level Aggregation Graph Convolutional Network with Dynamic Graph Learning and Puzzle Optimization for Alzheimer's Classification (RBAGCN-DGL-PO-AC), using denoised T1-weighted Magnetic Resonance Images (MRIs) collected from Alzheimer's Disease Neuroimaging Initiative (ADNI) repository. Addressing the impact of noise in medical imaging, the method employs advanced denoising techniques includes: the Modified Spline-Kernelled Chirplet Transform (MSKCT), Jump Gain Integral Recurrent Neural Network (JGIRNN), and Newton Time Extracting Wavelet Transform (NTEWT), to enhance the image quality. Key brain regions, crucial for classification such as hippocampal, lateral ventricle and posterior cingulate cortex are segmented using Attention Guided Generalized Intuitionistic Fuzzy C-Means Clustering (AG-GIFCMC). Feature extraction and classification using segmented outputs are performed with RBAGCN-DGL and puzzle optimization, categorize input images into Healthy Controls (HC), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and Alzheimer's Disease (AD). To assess the effectiveness of the proposed method, we systematically examined the structural modifications to the RBAGCN-DGL-PO-AC model through extensive ablation studies. Experimental findings highlight that RBAGCN-DGL-PO-AC state-of-the art performance, with 99.25 % accuracy, outperforming existing methods including MSFFGCN_ADC, CNN_CAD_DBMRI, and FCNN_ADC, while reducing training time by 28.5 % and increasing inference speed by 32.7 %. Hence, the RBAGCN-DGL-PO-AC method enhances AD classification by integrating denoising, segmentation, and dynamic graph-based feature extraction, achieving superior accuracy and making it a valuable tool for clinical applications, ultimately improving patient outcomes and disease management.

Using machine learning models based on cardiac magnetic resonance parameters to predict the prognostic in children with myocarditis.

Hu D, Cui M, Zhang X, Wu Y, Liu Y, Zhai D, Guo W, Ju S, Fan G, Cai W

pubmed logopapersMay 24 2025
To develop machine learning (ML) models incorporating explanatory cardiac magnetic resonance (CMR) parameters for predicting the prognosis of myocarditis in pediatric patients. 77 patients with pediatric myocarditis diagnosed clinically between January 2020 and December 2023 were enrolled retrospectively. All patients were examined by ultrasound, electrocardiogram (ECG), serum biomarkers on admission, and CMR scan to obtain 16 explanatory CMR parameters. All patients underwent follow-up echocardiography and CMR. Patients were divided into two groups according to the occurrence of adverse cardiac events (ACE) during follow-up: the poor prognosis group (n = 23) and the good prognosis group (n = 54). Four models were established, including logistic regression (LR), random forest (RF), support vector machine classifier (SVC), and extreme gradient boosting (XGBoost) model. The performance of each model was evaluated by the area under the receiver operating characteristic curve (AUC). Model interpretation was generated by Shapley additive interpretation (Shap). Among the four models, the three most important features were late gadolinium enhancement (LGE), left ventricular ejection fraction (LVEF), and SAXPeak Global Circumferential Strain (SAXGCS). In addition, LGE, LVEF, SAXGCS, and LAXPeak Global Longitudinal Strain (LAXGLS) were selected as the key predictors for all four models. Four interpretable CMR parameters were extracted, among which the LR model had the best prediction performance. The AUC, sensitivity, and specificity were 0.893, 0.820, and 0.944, respectively. The findings indicate that the presence of LGE on CMR imaging, along with reductions in LVEF, SAXGCS, and LAXGLS, are predictive of poor prognosis in patients with acute myocarditis. ML models, particularly the LR model, demonstrate the potential to predict the prognosis of children with myocarditis. These findings provide valuable insights for cardiologists, supporting more informed clinical decision-making and potentially enhancing patient outcomes in pediatric myocarditis cases.

Noninvasive prediction of failure of the conservative treatment in lateral epicondylitis by clinicoradiological features and elbow MRI radiomics based on interpretable machine learning: a multicenter cohort study.

Cui J, Wang P, Zhang X, Zhang P, Yin Y, Bai R

pubmed logopapersMay 24 2025
To develop and validate an interpretable machine learning model based on clinicoradiological features and radiomic features based on magnetic resonance imaging (MRI) to predict the failure of conservative treatment in lateral epicondylitis (LE). This retrospective study included 420 patients with LE from three hospitals, divided into a training cohort (n = 245), an internal validation cohort (n = 115), and an external validation cohort (n = 60). Patients were categorized into conservative treatment failure (n = 133) and conservative treatment success (n = 287) groups based on the outcome of conservative treatment. We developed two predictive models: one utilizing clinicoradiological features, and another integrating clinicoradiological and radiomic features. Seven machine learning algorithms were evaluated to determine the optimal model for predicting the failure of conservative treatment. Model performance was assessed using ROC, and model interpretability was examined using SHapley Additive exPlanations (SHAP). The LightGBM algorithm was selected as the optimal model because of its superior performance. The combined model demonstrated enhanced predictive accuracy with an area under the ROC curve (AUC) of 0.96 (95% CI: 0.91, 0.99) in the external validation cohort. SHAP analysis identified the radiological feature "CET coronal tear size" and the radiomic feature "AX_log-sigma-1-0-mm-3D_glszm_SmallAreaEmphasis" as key predictors of conservative treatment failure. We developed and validated an interpretable LightGBM machine learning model that integrates clinicoradiological and radiomic features to predict the failure of conservative treatment in LE. The model demonstrates high predictive accuracy and offers valuable insights into key prognostic factors.

Preoperative risk assessment of invasive endometrial cancer using MRI-based radiomics: a systematic review and meta-analysis.

Gao Y, Liang F, Tian X, Zhang G, Zhang H

pubmed logopapersMay 24 2025
Image-derived machine learning (ML) is a robust and growing field in diagnostic imaging systems for both clinicians and radiologists. Accurate preoperative radiological evaluation of the invasive ability of endometrial cancer (EC) can increase the degree of clinical benefit. The present study aimed to investigate the diagnostic performance of magnetic resonance imaging (MRI)-derived artificial intelligence for accurate preoperative assessment of the invasive risk. The PubMed, Embase, Cochrane Library and Web of Science databases were searched, and pertinent English-language papers were collected. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), and positive and negative likelihood ratios (PLR and NLR, respectively) of all the papers were calculated using Stata software. The results were plotted on a summary receiver operating characteristic (SROC) curve, publication bias and threshold effects were evaluated, and meta-regression and subgroup analyses were conducted to explore the possible causes of intratumoral heterogeneity. MRI-based radiomics revealed pooled sensitivity (SEN) and specificity (SPE) values of 0.85 and 0.82 for the prediction of high-grade EC; 0.80 and 0.85 for deep myometrial invasion (DMI); 0.85 and 0.73 for lymphovascular space invasion (LVSI); 0.79 and 0.85 for microsatellite instability (MSI); and 0.90 and 0.72 for lymph node metastasis (LNM), respectively. For LVSI prediction and high-grade histological analysis, meta-regression revealed that the image segmentation and MRI-based radiomics modeling contributed to heterogeneity (p = 0.003 and 0.04). Through a systematic review and meta-analysis of the reported literature, preoperative MRI-derived ML could help clinicians accurately evaluate EC risk factors, potentially guiding individual treatment thereafter.

Quantitative image quality metrics enable resource-efficient quality control of clinically applied AI-based reconstructions in MRI.

White OA, Shur J, Castagnoli F, Charles-Edwards G, Whitcher B, Collins DJ, Cashmore MTD, Hall MG, Thomas SA, Thompson A, Harrison CA, Hopkinson G, Koh DM, Winfield JM

pubmed logopapersMay 24 2025
AI-based MRI reconstruction techniques improve efficiency by reducing acquisition times whilst maintaining or improving image quality. Recent recommendations from professional bodies suggest centres should perform quality assessments on AI tools. However, monitoring long-term performance presents challenges, due to model drift or system updates. Radiologist-based assessments are resource-intensive and may be subjective, highlighting the need for efficient quality control (QC) measures. This study explores using image quality metrics (IQMs) to assess AI-based reconstructions. 58 patients undergoing standard-of-care rectal MRI were imaged using AI-based and conventional T2-weighted sequences. Paired and unpaired IQMs were calculated. Sensitivity of IQMs to detect retrospective perturbations in AI-based reconstructions was assessed using control charts, and statistical comparisons between the four MR systems in the evaluation were performed. Two radiologists evaluated the image quality of the perturbed images, giving an indication of their clinical relevance. Paired IQMs demonstrated sensitivity to changes in AI-reconstruction settings, identifying deviations outside ± 2 standard deviations of the reference dataset. Unpaired metrics showed less sensitivity. Paired IQMs showed no difference in performance between 1.5 T and 3 T systems (p > 0.99), whilst minor but significant (p < 0.0379) differences were noted for unpaired IQMs. IQMs are effective for QC of AI-based MR reconstructions, offering resource-efficient alternatives to repeated radiologist evaluations. Future work should expand this to other imaging applications and assess additional measures.
Page 101 of 1191186 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.