Sort by:
Page 101 of 2482473 results

Prompt-based Dynamic Token Pruning to Guide Transformer Attention in Efficient Segmentation

Pallabi Dutta, Anubhab Maity, Sushmita Mitra

arxiv logopreprintJun 19 2025
The high computational demands of Vision Transformers (ViTs), in processing a huge number of tokens, often constrain their practical application in analyzing medical images. This research proposes an adaptive prompt-guided pruning method to selectively reduce the processing of irrelevant tokens in the segmentation pipeline. The prompt-based spatial prior helps to rank the tokens according to their relevance. Tokens with low-relevance scores are down-weighted, ensuring that only the relevant ones are propagated for processing across subsequent stages. This data-driven pruning strategy facilitates end-to-end training, maintains gradient flow, and improves segmentation accuracy by focusing computational resources on essential regions. The proposed framework is integrated with several state-of-the-art models to facilitate the elimination of irrelevant tokens; thereby, enhancing computational efficiency while preserving segmentation accuracy. The experimental results show a reduction of $\sim$ 35-55\% tokens; thus reducing the computational costs relative to the baselines. Cost-effective medical image processing, using our framework, facilitates real-time diagnosis by expanding its applicability in resource-constrained environments.

Towards Classifying Histopathological Microscope Images as Time Series Data

Sungrae Hong, Hyeongmin Park, Youngsin Ko, Sol Lee, Bryan Wong, Mun Yong Yi

arxiv logopreprintJun 19 2025
As the frontline data for cancer diagnosis, microscopic pathology images are fundamental for providing patients with rapid and accurate treatment. However, despite their practical value, the deep learning community has largely overlooked their usage. This paper proposes a novel approach to classifying microscopy images as time series data, addressing the unique challenges posed by their manual acquisition and weakly labeled nature. The proposed method fits image sequences of varying lengths to a fixed-length target by leveraging Dynamic Time-series Warping (DTW). Attention-based pooling is employed to predict the class of the case simultaneously. We demonstrate the effectiveness of our approach by comparing performance with various baselines and showcasing the benefits of using various inference strategies in achieving stable and reliable results. Ablation studies further validate the contribution of each component. Our approach contributes to medical image analysis by not only embracing microscopic images but also lifting them to a trustworthy level of performance.

AGE-US: automated gestational age estimation based on fetal ultrasound images

César Díaz-Parga, Marta Nuñez-Garcia, Maria J. Carreira, Gabriel Bernardino, Nicolás Vila-Blanco

arxiv logopreprintJun 19 2025
Being born small carries significant health risks, including increased neonatal mortality and a higher likelihood of future cardiac diseases. Accurate estimation of gestational age is critical for monitoring fetal growth, but traditional methods, such as estimation based on the last menstrual period, are in some situations difficult to obtain. While ultrasound-based approaches offer greater reliability, they rely on manual measurements that introduce variability. This study presents an interpretable deep learning-based method for automated gestational age calculation, leveraging a novel segmentation architecture and distance maps to overcome dataset limitations and the scarcity of segmentation masks. Our approach achieves performance comparable to state-of-the-art models while reducing complexity, making it particularly suitable for resource-constrained settings and with limited annotated data. Furthermore, our results demonstrate that the use of distance maps is particularly suitable for estimating femur endpoints.

Segmentation of Pulp and Pulp Stones with Automatic Deep Learning in Panoramic Radiographs: An Artificial Intelligence Study.

Firincioglulari M, Boztuna M, Mirzaei O, Karanfiller T, Akkaya N, Orhan K

pubmed logopapersJun 19 2025
<b>Background/Objectives</b>: Different sized calcified masses called pulp stones are often detected in dental pulp and can impact dental procedures. The current research was conducted with the aim of measuring the ability of artificial intelligence algorithms to accurately diagnose pulp and pulp stone calcifications on panoramic radiographs. <b>Methods</b>: We used 713 panoramic radiographs, on which a minimum of one pulp stone was detected, identified retrospectively, and included in the study-4675 pulp stones and 5085 pulps were marked on these radiographs using CVAT v1.7.0 labeling software. <b>Results</b>: In the test dataset, the AI model segmented 462 panoramic radiographs for pulp stone and 220 panoramic radiographs for pulp. The dice coefficient and Intersection over Union (IoU) recorded for the Pulp Segmentation model were 0.84 and 0.758, respectively. Precision and recall were computed to be 0.858 and 0.827, respectively. The Pulp Stone Segmentation model achieved a dice coefficient of 0.759 and an IoU of 0.686, with precision and recall of 0.792 and 0.773, respectively. <b>Conclusions</b>: Pulp and pulp stones can successfully be identified using artificial intelligence algorithms. This study provides evidence that artificial intelligence software using deep learning algorithms can be valuable adjunct tools in aiding clinicians in radiographic diagnosis. Further research in which larger datasets are examined are needed to enhance the capability of artificial intelligence models to make accurate diagnoses.

Comparison of publicly available artificial intelligence models for pancreatic segmentation on T1-weighted Dixon images.

Sonoda Y, Fujisawa S, Kurokawa M, Gonoi W, Hanaoka S, Yoshikawa T, Abe O

pubmed logopapersJun 18 2025
This study aimed to compare three publicly available deep learning models (TotalSegmentator, TotalVibeSegmentator, and PanSegNet) for automated pancreatic segmentation on magnetic resonance images and to evaluate their performance against human annotations in terms of segmentation accuracy, volumetric measurement, and intrapancreatic fat fraction (IPFF) assessment. Twenty upper abdominal T1-weighted magnetic resonance series acquired using the two-point Dixon method were randomly selected. Three radiologists manually segmented the pancreas, and a ground-truth mask was constructed through a majority vote per voxel. Pancreatic segmentation was also performed using the three artificial intelligence models. Performance was evaluated using the Dice similarity coefficient (DSC), 95th-percentile Hausdorff distance, average symmetric surface distance, positive predictive value, sensitivity, Bland-Altman plots, and concordance correlation coefficient (CCC) for pancreatic volume and IPFF. PanSegNet achieved the highest DSC (mean ± standard deviation, 0.883 ± 0.095) and showed no statistically significant difference from the human interobserver DSC (0.896 ± 0.068; p = 0.24). In contrast, TotalVibeSegmentator (0.731 ± 0.105) and TotalSegmentator (0.707 ± 0.142) had significantly lower DSC values compared with the human interobserver average (p < 0.001). For pancreatic volume and IPFF, PanSegNet demonstrated the best agreement with the ground truth (CCC values of 0.958 and 0.993, respectively), followed by TotalSegmentator (0.834 and 0.980) and TotalVibeSegmentator (0.720 and 0.672). PanSegNet demonstrated the highest segmentation accuracy and the best agreement with human measurements for both pancreatic volume and IPFF on T1-weighted Dixon images. This model appears to be the most suitable for large-scale studies requiring automated pancreatic segmentation and intrapancreatic fat evaluation.

EchoFM: Foundation Model for Generalizable Echocardiogram Analysis.

Kim S, Jin P, Song S, Chen C, Li Y, Ren H, Li X, Liu T, Li Q

pubmed logopapersJun 18 2025
Echocardiography is the first-line noninvasive cardiac imaging modality, providing rich spatio-temporal information on cardiac anatomy and physiology. Recently, foundation model trained on extensive and diverse datasets has shown strong performance in various downstream tasks. However, translating foundation models into the medical imaging domain remains challenging due to domain differences between medical and natural images, the lack of diverse patient and disease datasets. In this paper, we introduce EchoFM, a general-purpose vision foundation model for echocardiography trained on a large-scale dataset of over 20 million echocardiographic images from 6,500 patients. To enable effective learning of rich spatio-temporal representations from periodic videos, we propose a novel self-supervised learning framework based on a masked autoencoder with a spatio-temporal consistent masking strategy and periodic-driven contrastive learning. The learned cardiac representations can be readily adapted and fine-tuned for a wide range of downstream tasks, serving as a strong and flexible backbone model. We validate EchoFM through experiments across key downstream tasks in the clinical echocardiography workflow, leveraging public and multi-center internal datasets. EchoFM consistently outperforms SOTA methods, demonstrating superior generalization capabilities and flexibility. The code and checkpoints are available at: https://github.com/SekeunKim/EchoFM.git.

RadioRAG: Online Retrieval-augmented Generation for Radiology Question Answering.

Tayebi Arasteh S, Lotfinia M, Bressem K, Siepmann R, Adams L, Ferber D, Kuhl C, Kather JN, Nebelung S, Truhn D

pubmed logopapersJun 18 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To evaluate diagnostic accuracy of various large language models (LLMs) when answering radiology-specific questions with and without access to additional online, up-to-date information via retrieval-augmented generation (RAG). Materials and Methods The authors developed Radiology RAG (RadioRAG), an end-to-end framework that retrieves data from authoritative radiologic online sources in real-time. RAG incorporates information retrieval from external sources to supplement the initial prompt, grounding the model's response in relevant information. Using 80 questions from the RSNA Case Collection across radiologic subspecialties and 24 additional expert-curated questions with reference standard answers, LLMs (GPT-3.5-turbo, GPT-4, Mistral-7B, Mixtral-8 × 7B, and Llama3 [8B and 70B]) were prompted with and without RadioRAG in a zero-shot inference scenario (temperature ≤ 0.1, top- <i>P</i> = 1). RadioRAG retrieved context-specific information from www.radiopaedia.org. Accuracy of LLMs with and without RadioRAG in answering questions from each dataset was assessed. Statistical analyses were performed using bootstrapping while preserving pairing. Additional assessments included comparison of model with human performance and comparison of time required for conventional versus RadioRAG-powered question answering. Results RadioRAG improved accuracy for some LLMs, including GPT-3.5-turbo [74% (59/80) versus 66% (53/80), FDR = 0.03] and Mixtral-8 × 7B [76% (61/80) versus 65% (52/80), FDR = 0.02] on the RSNA-RadioQA dataset, with similar trends in the ExtendedQA dataset. Accuracy exceeded (FDR ≤ 0.007) that of a human expert (63%, (50/80)) for these LLMs, while not for Mistral-7B-instruct-v0.2, Llama3-8B, and Llama3-70B (FDR ≥ 0.21). RadioRAG reduced hallucinations for all LLMs (rates from 6-25%). RadioRAG increased estimated response time fourfold. Conclusion RadioRAG shows potential to improve LLM accuracy and factuality in radiology question answering by integrating real-time domain-specific data. ©RSNA, 2025.

Dual-scan self-learning denoising for application in ultralow-field MRI.

Zhang Y, He W, Wu J, Xu Z

pubmed logopapersJun 18 2025
This study develops a self-learning method to denoise MR images for use in ultralow field (ULF) applications. We propose use of a self-learning neural network for denoising 3D MRI obtained from two acquisitions (dual scan), which are utilized as training pairs. Based on the self-learning method Noise2Noise, an effective data augmentation method and integrated learning strategy for enhancing model performance are proposed. Experimental results demonstrate that (1) the proposed model can produce exceptional denoising results and outperform the traditional Noise2Noise method subjectively and objectively; (2) magnitude images can be effectively denoised comparing with several state-of-the-art methods on synthetic and real ULF data; and (3) the proposed method can yield better results on phase images and quantitative imaging applications than other denoisers due to the self-learning framework. Theoretical and experimental implementations show that the proposed self-learning model achieves improved performance on magnitude image denoising with synthetic and real-world data at ULF. Additionally, we test our method on calculated phase and quantification images, demonstrating its superior performance over several contrastive methods.

RECIST<sup>Surv</sup>: Hybrid Multi-task Transformer for Hepatocellular Carcinoma Response and Survival Evaluation.

Jiao R, Liu Q, Zhang Y, Pu B, Xue B, Cheng Y, Yang K, Liu X, Qu J, Jin C, Zhang Y, Wang Y, Zhang YD

pubmed logopapersJun 18 2025
Transarterial Chemoembolization (TACE) is a widely applied alternative treatment for patients with hepatocellular carcinoma who are not eligible for liver resection or transplantation. However, the clinical outcomes after TACE are highly heterogeneous. There remains an urgent need for effective and efficient strategies to accurately assess tumor response and predict long-term outcomes using longitudinal and multi-center datasets. To address this challenge, we here introduce RECIST<sup>Surv</sup>, a novel response-driven Transformer model that integrates multi-task learning with a response-driven co-attention mechanism to simultaneously perform liver and tumor segmentation, predict tumor response to TACE, and estimate overall survival based on longitudinal Computed Tomography (CT) imaging. The proposed Response-driven Co-attention layer models the interactions between pre-TACE and post-TACE features guided by the treatment response embedding. This design enables the model to capture complex relationships between imaging features, treatment response, and survival outcomes, thereby enhancing both prediction accuracy and interpretability. In a multi-center validation study, RECIST<sup>Surv</sup>-predicted prognosis has demonstrated superior precision than state-of-the-art methods with C-indexes ranging from 0.595 to 0.780. Furthermore, when integrated with multi-modal data, RECIST<sup>Surv</sup> has emerged as an independent prognostic factor in all three validation cohorts, with hazard ratio (HR) ranging from 1.693 to 20.7 (P = 0.001-0.042). Our results highlight the potential of RECIST<sup>Surv</sup> as a powerful tool for personalized treatment planning and outcome prediction in hepatocellular carcinoma patients undergoing TACE. The experimental code is made publicly available at https://github.com/rushier/RECISTSurv.

Quality control system for patient positioning and filling in meta-information for chest X-ray examinations.

Borisov AA, Semenov SS, Kirpichev YS, Arzamasov KM, Omelyanskaya OV, Vladzymyrskyy AV, Vasilev YA

pubmed logopapersJun 18 2025
During radiography, irregularities occur, leading to decrease in the diagnostic value of the images obtained. The purpose of this work was to develop a system for automated quality assurance of patient positioning in chest radiographs, with detection of suboptimal contrast, brightness, and metadata errors. The quality assurance system was trained and tested using more than 69,000 X-rays of the chest and other anatomical areas from the Unified Radiological Information Service (URIS) and several open datasets. Our dataset included studies regardless of a patient's gender and race, while the sole exclusion criterion being age below 18 years. A training dataset of radiographs labeled by expert radiologists was used to train an ensemble of modified deep convolutional neural networks architectures ResNet152V2 and VGG19 to identify various quality deficiencies. Model performance was accessed using area under the receiver operating characteristic curve (ROC-AUC), precision, recall, F1-score, and accuracy metrics. Seven neural network models were trained to classify radiographs by the following quality deficiencies: failure to capture the target anatomic region, chest rotation, suboptimal brightness, incorrect anatomical area, projection errors, and improper photometric interpretation. All metrics for each model exceed 95%, indicating high predictive value. All models were combined into a unified system for evaluating radiograph quality. The processing time per image is approximately 3 s. The system supports multiple use cases: integration into an automated radiographic workstations, external quality assurance system for radiology departments, acquisition quality audits for municipal health systems, and routing of studies to diagnostic AI models.
Page 101 of 2482473 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.