Dual-scan self-learning denoising for application in ultralow-field MRI.
Authors
Affiliations (2)
Affiliations (2)
- School of Electrical Engineering, Chongqing University, Chongqing, People's Republic of China.
- Shenzhen Academy of Aerospace Technology, Shenzhen, People's Republic of China.
Abstract
This study develops a self-learning method to denoise MR images for use in ultralow field (ULF) applications. We propose use of a self-learning neural network for denoising 3D MRI obtained from two acquisitions (dual scan), which are utilized as training pairs. Based on the self-learning method Noise2Noise, an effective data augmentation method and integrated learning strategy for enhancing model performance are proposed. Experimental results demonstrate that (1) the proposed model can produce exceptional denoising results and outperform the traditional Noise2Noise method subjectively and objectively; (2) magnitude images can be effectively denoised comparing with several state-of-the-art methods on synthetic and real ULF data; and (3) the proposed method can yield better results on phase images and quantitative imaging applications than other denoisers due to the self-learning framework. Theoretical and experimental implementations show that the proposed self-learning model achieves improved performance on magnitude image denoising with synthetic and real-world data at ULF. Additionally, we test our method on calculated phase and quantification images, demonstrating its superior performance over several contrastive methods.