Sort by:
Page 10 of 22214 results

Interventional Radiology Reporting Standards and Checklist for Artificial Intelligence Research Evaluation (iCARE).

Anibal JT, Huth HB, Boeken T, Daye D, Gichoya J, Muñoz FG, Chapiro J, Wood BJ, Sze DY, Hausegger K

pubmed logopapersJun 25 2025
As artificial intelligence (AI) becomes increasingly prevalent within interventional radiology (IR) research and clinical practice, steps must be taken to ensure the robustness of novel technological systems presented in peer-reviewed journals. This report introduces comprehensive standards and an evaluation checklist (iCARE) that covers the application of modern AI methods in IR-specific contexts. The iCARE checklist encompasses the full "code-to-clinic" pipeline of AI development, including dataset curation, pre-training, task-specific training, explainability, privacy protection, bias mitigation, reproducibility, and model deployment. The iCARE checklist aims to support the development of safe, generalizable technologies for enhancing IR workflows, the delivery of care, and patient outcomes.

[Advances in low-dose cone-beam computed tomography image reconstruction methods based on deep learning].

Shi J, Song Y, Li G, Bai S

pubmed logopapersJun 25 2025
Cone-beam computed tomography (CBCT) is widely used in dentistry, surgery, radiotherapy and other medical fields. However, repeated CBCT scans expose patients to additional radiation doses, increasing the risk of secondary malignant tumors. Low-dose CBCT image reconstruction technology, which employs advanced algorithms to reduce radiation dose while enhancing image quality, has emerged as a focal point of recent research. This review systematically examined deep learning-based methods for low-dose CBCT reconstruction. It compared different network architectures in terms of noise reduction, artifact removal, detail preservation, and computational efficiency, covering three approaches: image-domain, projection-domain, and dual-domain techniques. The review also explored how emerging technologies like multimodal fusion and self-supervised learning could enhance these methods. By summarizing the strengths and weaknesses of current approaches, this work provides insights to optimize low-dose CBCT algorithms and support their clinical adoption.

Brain ultrasonography in neurosurgical patients.

Mahajan C, Kapoor I, Prabhakar H

pubmed logopapersJun 24 2025
Brain ultrasound is a popular point-of-care test that helps visualize brain structures. This review highlights recent developments in brain ultrasonography. There is a need to keep pace with the ongoing technological advancements and establishing standardized quality criteria for improving its utility in clinical practice. Newer automated indices derived from transcranial Doppler help establish its role as a noninvasive monitor of intracranial pressure and diagnosing vasospasm/delayed cerebral ischemia. A novel robotic transcranial Doppler system equipped with artificial intelligence allows real-time continuous neuromonitoring. Intraoperative ultrasound assists neurosurgeons in real-time localization of brain lesions and helps in assessing the extent of resection, thereby enhancing surgical precision and safety. Optic nerve sheath diameter point-of-care ultrasonography is an effective means of diagnosing raised intracranial pressure, triaging, and prognostication. The quality criteria checklist can help standardize this technique. Newer advancements like focused ultrasound, contrast-enhanced ultrasound, and functional ultrasound have also been discussed. Brain ultrasound continues to be a critical bedside tool in neurologically injured patients. With the advent of technological advancements, its utility has widened and its capabilities have expanded, making it more accurate and versatile in clinical practice.

Systematic Review of Pituitary Gland and Pituitary Adenoma Automatic Segmentation Techniques in Magnetic Resonance Imaging

Mubaraq Yakubu, Navodini Wijethilake, Jonathan Shapey, Andrew King, Alexander Hammers

arxiv logopreprintJun 24 2025
Purpose: Accurate segmentation of both the pituitary gland and adenomas from magnetic resonance imaging (MRI) is essential for diagnosis and treatment of pituitary adenomas. This systematic review evaluates automatic segmentation methods for improving the accuracy and efficiency of MRI-based segmentation of pituitary adenomas and the gland itself. Methods: We reviewed 34 studies that employed automatic and semi-automatic segmentation methods. We extracted and synthesized data on segmentation techniques and performance metrics (such as Dice overlap scores). Results: The majority of reviewed studies utilized deep learning approaches, with U-Net-based models being the most prevalent. Automatic methods yielded Dice scores of 0.19--89.00\% for pituitary gland and 4.60--96.41\% for adenoma segmentation. Semi-automatic methods reported 80.00--92.10\% for pituitary gland and 75.90--88.36\% for adenoma segmentation. Conclusion: Most studies did not report important metrics such as MR field strength, age and adenoma size. Automated segmentation techniques such as U-Net-based models show promise, especially for adenoma segmentation, but further improvements are needed to achieve consistently good performance in small structures like the normal pituitary gland. Continued innovation and larger, diverse datasets are likely critical to enhancing clinical applicability.

Advances and Integrations of Computer-Assisted Planning, Artificial Intelligence, and Predictive Modeling Tools for Laser Interstitial Thermal Therapy in Neurosurgical Oncology.

Warman A, Moorthy D, Gensler R, Horowtiz MA, Ellis J, Tomasovic L, Srinivasan E, Ahmed K, Azad TD, Anderson WS, Rincon-Torroella J, Bettegowda C

pubmed logopapersJun 24 2025
Laser interstitial thermal therapy (LiTT) has emerged as a minimally invasive, MRI-guided treatment of brain tumors that are otherwise considered inoperable because of their location or the patient's poor surgical candidacy. By directing thermal energy at neoplastic lesions while minimizing damage to surrounding healthy tissue, LiTT offers promising therapeutic outcomes for both newly diagnosed and recurrent tumors. However, challenges such as postprocedural edema, unpredictable heat diffusion near blood vessels and ventricles in real time underscore the need for improved planning and monitoring. Incorporating artificial intelligence (AI) presents a viable solution to many of these obstacles. AI has already demonstrated effectiveness in optimizing surgical trajectories, predicting seizure-free outcomes in epilepsy cases, and generating heat distribution maps to guide real-time ablation. This technology could be similarly deployed in neurosurgical oncology to identify patients most likely to benefit from LiTT, refine trajectory planning, and predict tissue-specific heat responses. Despite promising initial studies, further research is needed to establish the robust data sets and clinical trials necessary to develop and validate AI-driven LiTT protocols. Such advancements have the potential to bolster LiTT's efficacy, minimize complications, and ultimately transform the neurosurgical management of primary and metastatic brain tumors.

[Incidental pulmonary nodules on CT imaging: what to do?].

van der Heijden EHFM, Snoeren M, Jacobs C

pubmed logopapersJun 23 2025
Incidental pulmonary nodules are very frequently found on CT imaging and may represent (early stage) lung cancers without any signs or symptoms. These incidental findings can be solid lesions or ground glass lesions that may be solitary or multiple. Careful, and systematic evaluation of these findings in imaging is needed to determine the risk of malignancy, based on imaging characteristics, patient factors like smoking habits, prior cancers or family history, and growth rate preferably determined by volume measurements. Once the risk of malignancy is increased, minimal invasive image guided biopsy is warranted, preferably by navigation bronchoscopy. We present two cases to illustrate this clinical workup: one case with a benign solitary pulmonary nodule, and a second case with multiple ground glass opacities, diagnosed as synchronous primary adenocarcinomas of the lung. This is followed by a review of the current status of computer and artificial intelligence aided diagnostic support and clinical workflow optimization.

The future of biomarkers for vascular contributions to cognitive impairment and dementia (VCID): proceedings of the 2025 annual workshop of the Albert research institute for white matter and cognition.

Lennon MJ, Karvelas N, Ganesh A, Whitehead S, Sorond FA, Durán Laforet V, Head E, Arfanakis K, Kolachalama VB, Liu X, Lu H, Ramirez J, Walker K, Weekman E, Wellington CL, Winston C, Barone FC, Corriveau RA

pubmed logopapersJun 21 2025
Advances in biomarkers and pathophysiology of vascular contributions to cognitive impairment and dementia (VCID) are expected to bring greater mechanistic insights, more targeted treatments, and potentially disease-modifying therapies. The 2025 Annual Workshop of the Albert Research Institute for White Matter and Cognition, sponsored by the Leo and Anne Albert Charitable Trust since 2015, focused on novel biomarkers for VCID. The meeting highlighted the complexity of dementia, emphasizing that the majority of cases involve multiple brain pathologies, with vascular pathology typically present. Potential novel approaches to diagnosis of disease processes and progression that may result in VCID included measures of microglial senescence and retinal changes, as well as artificial intelligence (AI) integration of multimodal datasets. Proteomic studies identified plasma proteins associated with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL; a rare genetic disorder affecting brain vessels) and age-related vascular pathology that suggested potential therapeutic targets. Blood-based microglial and brain-derived extracellular vesicles are promising tools for early detection of brain inflammation and other changes that have been associated with cognitive decline. Imaging measures of blood perfusion, oxygen extraction, and cerebrospinal fluid (CSF) flow were discussed as potential VCID biomarkers, in part because of correlations with classic pathological Alzheimer's disease (AD) biomarkers. MRI-visible perivascular spaces, which may be a novel imaging biomarker of sleep-driven glymphatic waste clearance dysfunction, are associated with vascular risk factors, lower cognitive function, and various brain pathologies including Alzheimer's, Parkinson's and cerebral amyloid angiopathy (CAA). People with Down syndrome are at high risk for dementia. Individuals with Down syndrome who develop dementia almost universally experience mixed brain pathologies, with AD pathology and cerebrovascular pathology being the most common. This follows the pattern in the general population where mixed pathologies are also predominant in the brains of people clinically diagnosed with dementia, including AD dementia. Intimate partner violence-related brain injury, hypertension's impact on dementia risk, and the promise of remote ischemic conditioning for treating VCID were additional themes.

Advances of MR imaging in glioma: what the neurosurgeon needs to know.

Falk Delgado A

pubmed logopapersJun 21 2025
Glial tumors and especially glioblastoma present a major challenge in neuro-oncology due to their infiltrative growth, resistance to therapy, and poor overall survival-despite aggressive treatments such as maximal safe resection and chemoradiotherapy. These tumors typically manifest through neurological symptoms such as seizures, headaches, and signs of increased intracranial pressure, prompting urgent neuroimaging. At initial diagnosis, MRI plays a central role in differentiating true neoplasms from tumor mimics, including inflammatory or infectious conditions. Advanced techniques such as perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) enhance diagnostic specificity and may prevent unnecessary surgical intervention. In the preoperative phase, MRI contributes to surgical planning through the use of functional MRI (fMRI) and diffusion tensor imaging (DTI), enabling localization of eloquent cortex and white matter tracts. These modalities support safer resections by informing trajectory planning and risk assessment. Emerging MR techniques, including magnetic resonance spectroscopy, amide proton transfer imaging, and 2HG quantification, offer further potential in delineating tumor infiltration beyond contrast-enhancing margins. Postoperatively, MRI is important for evaluating residual tumor, detecting surgical complications, and guiding radiotherapy planning. During treatment surveillance, MRI assists in distinguishing true progression from pseudoprogression or radiation necrosis, thereby guiding decisions on additional surgery, changes in systemic therapy, or inclusion into clinical trials. The continued evolution of MRI hardware, software, and image analysis-particularly with the integration of machine learning-will be critical for supporting precision neurosurgical oncology. This review highlights how advanced MRI techniques can inform clinical decision-making at each stage of care in patients with high-grade gliomas.

Emergency radiology: roadmap for radiology departments.

Aydin S, Ece B, Cakmak V, Kocak B, Onur MR

pubmed logopapersJun 20 2025
Emergency radiology has evolved into a significant subspecialty over the past 2 decades, facing unique challenges including escalating imaging volumes, increasing study complexity, and heightened expectations from clinicians and patients. This review provides a comprehensive overview of the key requirements for an effective emergency radiology unit. Emergency radiologists play a crucial role in real-time decision-making by providing continuous 24/7 support, requiring expertise across various organ systems and close collaboration with emergency physicians and specialists. Beyond image interpretation, emergency radiologists are responsible for organizing staff schedules, planning equipment, determining imaging protocols, and establishing standardized reporting systems. Operational considerations in emergency radiology departments include efficient scheduling models such as circadian-based scheduling, strategic equipment organization with primary imaging modalities positioned near emergency departments, and effective imaging management through structured ordering systems and standardized protocols. Preparedness for mass casualty incidents requires a well-organized workflow process map detailing steps from patient transfer to image acquisition and interpretation, with clear task allocation and imaging pathways. Collaboration between emergency radiologists and physicians is essential, with accurate communication facilitated through various channels and structured reporting templates. Artificial intelligence has emerged as a transformative tool in emergency radiology, offering potential benefits in both interpretative domains (detecting intracranial hemorrhage, pulmonary embolism, acute ischemic stroke) and non-interpretative applications (triage systems, protocol assistance, quality control). Despite implementation challenges including clinician skepticism, financial considerations, and ethical issues, AI can enhance diagnostic accuracy and workflow optimization. Teleradiology provides solutions for staff shortages, particularly during off-hours, with hybrid models allowing radiologists to work both on-site and remotely. This review aims to guide stakeholders in establishing and maintaining efficient emergency radiology services to improve patient outcomes.

Current and future applications of artificial intelligence in lung cancer and mesothelioma.

Roche JJ, Seyedshahi F, Rakovic K, Thu AW, Le Quesne J, Blyth KG

pubmed logopapersJun 20 2025
Considerable challenges exist in managing lung cancer and mesothelioma, including diagnostic complexity, treatment stratification, early detection and imaging quantification. Variable incidence in mesothelioma also makes equitable provision of high-quality care difficult. In this context, artificial intelligence (AI) offers a range of assistive/automated functions that can potentially enhance clinical decision-making, while reducing inequality and pathway delay. In this state-of-the-art narrative review, we synthesise evidence on this topic, focusing particularly on tools that ingest routine pathology and radiology images. We summarise the strengths and weaknesses of AI applied to common multidisciplinary team (MDT) functions, including histological diagnosis, therapeutic response prediction, radiological detection and quantification, and survival estimation. We also review emerging methods capable of generating novel biological insights and current barriers to implementation, including access to high-quality training data and suitable regulatory and technical infrastructure. Neural networks trained on pathology images have proven utility in histological classification, prognostication, response prediction and survival. Self-supervised models can also generate new insights into biological features responsible for adverse outcomes. Radiology applications include lung nodule tools, which offer critical pathway support for imminent lung cancer screening and urgent referrals. Tumour segmentation AI offers particular advantages in mesothelioma, where response assessment and volumetric staging are difficult using human readers due to tumour size and morphological complexity. AI is also critical for radiogenomics, permitting effective integration of molecular and radiomic features for discovery of non-invasive markers for molecular subtyping and enhanced stratification. AI solutions offer considerable potential benefits across the MDT, particularly in repetitive or time-consuming tasks based on pathology and radiology images. Effective leveraging of this technology is critical for lung cancer screening and efficient delivery of increasingly complex diagnostic and predictive MDT functions. Future AI research should involve transparent and interpretable outputs that assist in explaining the basis of AI-supported decision making.
Page 10 of 22214 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.