Sort by:
Page 10 of 15147 results

Ultra-fast biparametric MRI in prostate cancer assessment: Diagnostic performance and image quality compared to conventional multiparametric MRI.

Pausch AM, Filleböck V, Elsner C, Rupp NJ, Eberli D, Hötker AM

pubmed logopapersJun 1 2025
To compare the diagnostic performance and image quality of a deep-learning-assisted ultra-fast biparametric MRI (bpMRI) with the conventional multiparametric MRI (mpMRI) for the diagnosis of clinically significant prostate cancer (csPCa). This prospective single-center study enrolled 123 biopsy-naïve patients undergoing conventional mpMRI and additionally ultra-fast bpMRI at 3 T between 06/2023-02/2024. Two radiologists (R1: 4 years and R2: 3 years of experience) independently assigned PI-RADS scores (PI-RADS v2.1) and assessed image quality (mPI-QUAL score) in two blinded study readouts. Weighted Cohen's Kappa (κ) was calculated to evaluate inter-reader agreement. Diagnostic performance was analyzed using clinical data and histopathological results from clinically indicated biopsies. Inter-reader agreement was good for both mpMRI (κ = 0.83) and ultra-fast bpMRI (κ = 0.87). Both readers demonstrated high sensitivity (≥94 %/≥91 %, R1/R2) and NPV (≥96 %/≥95 %) for csPCa detection using both protocols. The more experienced reader mostly showed notably higher specificity (≥77 %/≥53 %), PPV (≥62 %/≥45 %), and diagnostic accuracy (≥82 %/≥65 %) compared to the less experienced reader. There was no significant difference in the diagnostic performance of correctly identifying csPCa between both protocols (p > 0.05). The ultra-fast bpMRI protocol had significantly better image quality ratings (p < 0.001) and achieved a reduction in scan time of 80 % compared to conventional mpMRI. Deep-learning-assisted ultra-fast bpMRI protocols offer a promising alternative to conventional mpMRI for diagnosing csPCa in biopsy-naïve patients with comparable inter-reader agreement and diagnostic performance at superior image quality. However, reader experience remains essential for diagnostic performance.

Optimizing MR-based attenuation correction in hybrid PET/MR using deep learning: validation with a flatbed insert and consistent patient positioning.

Wang H, Wang Y, Xue Q, Zhang Y, Qiao X, Lin Z, Zheng J, Zhang Z, Yang Y, Zhang M, Huang Q, Huang Y, Cao T, Wang J, Li B

pubmed logopapersJun 1 2025
To address the challenges of verifying MR-based attenuation correction (MRAC) in PET/MR due to CT positional mismatches and alignment issues, this study utilized a flatbed insert and arms-down positioning during PET/CT scans to achieve precise MR-CT matching for accurate MRAC evaluation. A validation dataset of 21 patients underwent whole-body [<sup>18</sup>F]FDG PET/CT followed by [<sup>18</sup>F]FDG PET/MR. A flatbed insert ensured consistent positioning, allowing direct comparison of four MRAC methods-four-tissue and five-tissue models with discrete and continuous μ-maps-against CT-based attenuation correction (CTAC). A deep learning-based framework, trained on a dataset of 300 patients, was used to generate synthesized-CTs from MR images, forming the basis for all MRAC methods. Quantitative analyses were conducted at the whole-body, region of interest, and lesion levels, with lesion-distance analysis evaluating the impact of bone proximity on standardized uptake value (SUV) quantification. Distinct differences were observed among MRAC methods in spine and femur regions. Joint histogram analysis showed MRAC-4 (continuous μ-map) closely aligned with CTAC. Lesion-distance analysis revealed MRAC-4 minimized bone-induced SUV interference (r = 0.01, p = 0.8643). However, tissues prone to bone segmentation interference, such as the spine and liver, exhibited greater SUV variability and lower reproducibility in MRAC-4 compared to MRAC-2 (2D bone segmentation, discrete μ-map) and MRAC-3 (3D bone segmentation, discrete μ-map). Using a flatbed insert, this study validated MRAC with high precision. Continuous μ-value MRAC method (MRAC-4) demonstrated superior accuracy and minimized bone-related SUV errors but faced challenges in reproducibility, particularly in bone-rich regions.

Human-AI collaboration for ultrasound diagnosis of thyroid nodules: a clinical trial.

Edström AB, Makouei F, Wennervaldt K, Lomholt AF, Kaltoft M, Melchiors J, Hvilsom GB, Bech M, Tolsgaard M, Todsen T

pubmed logopapersJun 1 2025
This clinical trial examined how the articifial intelligence (AI)-based diagnostics system S-Detect for Thyroid influences the ultrasound diagnostic work-up of thyroid ultrasound (US) performed by different US users in clinical practice and how different US users influences the diagnostic accuracy of S-Detect. We conducted a clinical trial with 20 participants, including medical students, US novice physicians, and US experienced physicians. Five patients with thyroid nodules (one malignant and four benign) volunteered to undergo a thyroid US scan performed by all 20 participants using the same US systems with S-Detect installed. Participants performed a focused thyroid US on each patient case and made a nodule classification according to the European Thyroid Imaging Reporting And Data System (EU-TIRADS). They then performed a S-Detect analysis of the same nodule and were asked to re-evaluate their EU-TIRADS reporting. From the EU-TIRADS assessments by participants, we derived a biopsy recommendation outcome of whether fine needle aspiration biopsy (FNAB) was recommended. The mean diagnostic accuracy for S-Detect was 71.3% (range 40-100%) among all participants, with no significant difference between the groups (p = 0.31). The accuracy of our biopsy recommendation outcome was 69.8% before and 69.2% after AI for all participants (p = 0.75). In this trial, we did not find S-Detect to improve the thyroid diagnostic work-up in clinical practice among novice and intermediate ultrasound operators. However, the operator had a substantial impact on the AI-generated ultrasound diagnosis, with a variation in diagnostic accuracy from 40 to 100%, despite the same patients and ultrasound machines being used in the trial.

Implementation costs and cost-effectiveness of ultraportable chest X-ray with artificial intelligence in active case finding for tuberculosis in Nigeria.

Garg T, John S, Abdulkarim S, Ahmed AD, Kirubi B, Rahman MT, Ubochioma E, Creswell J

pubmed logopapersJun 1 2025
Availability of ultraportable chest x-ray (CXR) and advancements in artificial intelligence (AI)-enabled CXR interpretation are promising developments in tuberculosis (TB) active case finding (ACF) but costing and cost-effectiveness analyses are limited. We provide implementation cost and cost-effectiveness estimates of different screening algorithms using symptoms, CXR and AI in Nigeria. People 15 years and older were screened for TB symptoms and offered a CXR with AI-enabled interpretation using qXR v3 (Qure.ai) at lung health camps. Sputum samples were tested on Xpert MTB/RIF for individuals reporting symptoms or with qXR abnormality scores ≥0.30. We conducted a retrospective costing using a combination of top-down and bottom-up approaches while utilizing itemized expense data from a health system perspective. We estimated costs in five screening scenarios: abnormality score ≥0.30 and ≥0.50; cough ≥ 2 weeks; any symptom; abnormality score ≥0.30 or any symptom. We calculated total implementation costs, cost per bacteriologically-confirmed case detected, and assessed cost-effectiveness using incremental cost-effectiveness ratio (ICER) as additional cost per additional case. Overall, 3205 people with presumptive TB were identified, 1021 were tested, and 85 people with bacteriologically-confirmed TB were detected. Abnormality ≥ 0.30 or any symptom (US$65704) had the highest costs while cough ≥ 2 weeks was the lowest (US$40740). The cost per case was US$1198 for cough ≥ 2 weeks, and lowest for any symptom (US$635). Compared to baseline strategy of cough ≥ 2 weeks, the ICER for any symptom was US$191 per additional case detected and US$ 2096 for Abnormality ≥0.30 OR any symptom algorithm. Using CXR and AI had lower cost per case detected than any symptom screening criteria when asymptomatic TB was higher than 30% of all bacteriologically-confirmed TB detected. Compared to traditional symptom screening, using CXR and AI in combination with symptoms detects more cases at lower cost per case detected and is cost-effective. TB programs should explore adoption of CXR and AI for screening in ACF.

Deep learning enabled near-isotropic CAIPIRINHA VIBE in the nephrogenic phase improves image quality and renal lesion conspicuity.

Tan Q, Miao J, Nitschke L, Nickel MD, Lerchbaumer MH, Penzkofer T, Hofbauer S, Peters R, Hamm B, Geisel D, Wagner M, Walter-Rittel TC

pubmed logopapersJun 1 2025
Deep learning (DL) accelerated controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE), provides high spatial resolution T1-weighted imaging of the upper abdomen. We aimed to investigate whether DL-CAIPIRINHA-VIBE can improve image quality, vessel conspicuity, and lesion detectability compared to a standard CAIPIRINHA-VIBE in renal imaging at 3 Tesla. In this prospective study, 50 patients with 23 solid and 45 cystic renal lesions underwent MRI with clinical MR sequences, including standard CAIPIRINHA-VIBE and DL-CAIPIRINHA-VIBE sequences in the nephrographic phase at 3 Tesla. Two experienced radiologists independently evaluated both sequences and multiplanar reconstructions (MPR) of the sagittal and coronal planes for image quality with a Likert scale ranging from 1 to 5 (5 =best). Quantitative measurements including the size of the largest lesion and renal lesion contrast ratios were evaluated. DL-CAIPIRINHA-VIBE compared to standard CAIPIRINHA-VIBE showed significantly improved overall image quality, higher scores for renal border delineation, renal sinuses, vessels, adrenal glands, reduced motion artifacts and reduced perceived noise in nephrographic phase images (all p < 0.001). DL-CAIPIRINHA-VIBE with MPR showed superior lesion conspicuity and diagnostic confidence compared to standard CAIPIRINHA-VIBE. However, DL-CAIPIRINHA-VIBE presented a more synthetic appearance and more aliasing artifacts (p < 0.023). The mean size and signal intensity of renal lesions for DL-CAIPIRINHA-VIBE showed no significant differences compared to standard CAIPIRINHA-VIBE (p > 0.9). DL-CAIPIRINHA-VIBE is well suited for kidney imaging in the nephrographic phase, provides good image quality, improved delineation of anatomic structures and renal lesions.

Artificial intelligence driven plaque characterization and functional assessment from CCTA using OCT-based automation: A prospective study.

Han J, Wang Z, Chen T, Liu S, Tan J, Sun Y, Feng L, Zhang D, Ma L, Liu H, Tao H, Fang C, Yu H, Zeng M, Jia H, Yu B

pubmed logopapersJun 1 2025
We aimed to develop and validate an Artificial Intelligence (AI) model that leverages CCTA and optical coherence tomography (OCT) images for automated analysis of plaque characteristics and coronary function. A total of 100 patients who underwent invasive coronary angiography, OCT, and CCTA before discharge were included in this study. The data were randomly divided into a training set (80 %) and a test set (20 %). The training set, comprising 21,471 tomography images, was used to train a deep-learning convolutional neural network. Subsequently, the AI model was integrated with flow reserve score calculation software developed by Ruixin Medical. The results from the test set demonstrated excellent agreement between the AI model and OCT analysis for calcified plaque (McNemar test, p = 0.683), non-calcified plaque (McNemar test, p = 0.752), mixed plaque (McNemar test, p = 1.000), and low-attenuation plaque (McNemar test, p = 1.000). Additionally, there was excellent agreement for deep learning-derived minimum lumen diameter (intraclass correlation coefficient [ICC] 0.91, p < 0.001), mean vessel diameter (ICC 0.88, p < 0.001), and percent diameter stenosis (ICC 0.82, p < 0.001). In diagnosing >50 % coronary stenosis, the diagnostic accuracy of the AI model surpassed that of conventional CCTA (AUC 0.98 vs. 0.76, p = 0.008). When compared with quantitative flow fraction, there was excellent agreement between QFR and AI-derived CT-FFR (ICC 0.745, p < 0.0001). Our AI model effectively provides automated analysis of plaque characteristics from CCTA images, with the analysis results showing strong agreement with OCT findings. Moreover, the CT-FFR automatically analyzed by the AI model exhibits high consistency with QFR derived from coronary angiography.

CT-derived fractional flow reserve on therapeutic management and outcomes compared with coronary CT angiography in coronary artery disease.

Qian Y, Chen M, Hu C, Wang X

pubmed logopapersJun 1 2025
To determine the value of on-site deep learning-based CT-derived fractional flow reserve (CT-FFR) for therapeutic management and adverse clinical outcomes in patients suspected of coronary artery disease (CAD) compared with coronary CT angiography (CCTA) alone. This single-centre prospective study included consecutive patients suspected of CAD between June 2021 and September 2021 at our hospital. Four hundred and sixty-one patients were randomized into either CT-FFR+CCTA or CCTA-alone group. The first endpoint was the invasive coronary angiography (ICA) efficiency, defined as the ICA with nonobstructive disease (stenosis <50%) and the ratio of revascularization to ICA (REV-to-ICA ratio) within 90 days. The second endpoint was the incidence of major adverse cardiaovascular events (MACE) at 2 years. A total of 461 patients (267 [57.9%] men; median age, 64 [55-69]) were included. At 90 days, the rate of ICA with nonobstructive disease in the CT-FFR+CCTA group was lower than in the CCTA group (14.7% vs 34.0%, P=.047). The REV-to-ICA ratio in the CT-FFR+CCTA group was significantly higher than in the CCTA group (73.5% vs. 50.9%, P=.036). No significant difference in ICA efficiency was found in intermediate stenosis (25%-69%) between the 2 groups (all P>.05). After a median follow-up of 23 (22-24) months, MACE were observed in 11 patients in the CT-FFR+CCTA group and 24 in the CCTA group (5.9% vs 10.0%, P=.095). The on-site deep learning-based CT-FFR improved the efficiency of ICA utilization with a similarly low rate of MACE compared with CCTA alone. The on-site deep learning-based CT-FFR was superior to CCTA for therapeutic management.

Early-stage lung cancer detection via thin-section low-dose CT reconstruction combined with AI in non-high risk populations: a large-scale real-world retrospective cohort study.

Ji G, Luo W, Zhu Y, Chen B, Wang M, Jiang L, Yang M, Song W, Yao P, Zheng T, Yu H, Zhang R, Wang C, Ding R, Zhuo X, Chen F, Li J, Tang X, Xian J, Song T, Tang J, Feng M, Shao J, Li W

pubmed logopapersJun 1 2025
Current lung cancer screening guidelines recommend annual low-dose computed tomography (LDCT) for high-risk individuals. However, the effectiveness of LDCT in non-high-risk individuals remains inadequately explored. With the incidence of lung cancer steadily increasing among non-high-risk individuals, this study aims to assess the risk of lung cancer in non-high-risk individuals and evaluate the potential of thin-section LDCT reconstruction combined with artificial intelligence (LDCT-TRAI) as a screening tool. A real-world cohort study on lung cancer screening was conducted at the West China Hospital of Sichuan University from January 2010 to July 2021. Participants were screened using either LDCT-TRAI or traditional thick-section LDCT without AI (traditional LDCT) . The AI system employed was the uAI-ChestCare software. Lung cancer diagnoses were confirmed through pathological examination. Among the 259 121 enrolled non-high-risk participants, 87 260 (33.7%) had positive screening results. Within 1 year, 728 (0.3%) participants were diagnosed with lung cancer, of whom 87.1% (634/728) were never-smokers, and 92.7% (675/728) presented with stage I disease. Compared with traditional LDCT, LDCT-TRAI demonstrated a higher lung cancer detection rate (0.3% vs. 0.2%, <i>P</i> < 0.001), particularly for stage I cancers (94.4% vs. 83.2%, <i>P</i> < 0.001), and was associated with improved survival outcomes (5-year overall survival rate: 95.4% vs. 81.3%, <i>P</i> < 0.0001). These findings highlight the importance of expanding lung cancer screening to non-high-risk populations, especially never-smokers. LDCT-TRAI outperformed traditional LDCT in detecting early-stage cancers and improving survival outcomes, underscoring its potential as a more effective screening tool for early lung cancer detection in this population.

Review and reflections on live AI mammographic screen reading in a large UK NHS breast screening unit.

Puri S, Bagnall M, Erdelyi G

pubmed logopapersJun 1 2025
The Radiology team from a large Breast Screening Unit in the UK with a screening population of over 135,000 took part in a service evaluation project using artificial intelligence (AI) for reading breast screening mammograms. To evaluate the clinical benefit AI may provide when implemented as a silent reader in a double reading breast screening programme and to evaluate feasibility and the operational impact of deploying AI into the breast screening programme. The service was one of 14 breast screening sites in the UK to take part in this project and we present our local experience with AI in breast screening. A commercially available AI platform was deployed and worked in real time as a 'silent third reader' so as not to impact standard workflows and patient care. All cases flagged by AI but not recalled by standard double reading (positive discordant cases) were reviewed along with all cases recalled by human readers but not flagged by AI (negative discordant cases). 9,547 cases were included in the evaluation. 1,135 positive discordant cases were reviewed, and one woman was recalled from the reviews who was not found to have cancer on further assessment in the breast assessment clinic. 139 negative discordant cases were reviewed, and eight cancer cases (8.79% of total cancers detected in this period) recalled by human readers were not detected by AI. No additional cancers were detected by AI during the study. Performance of AI was inferior to human readers in our unit. Having missed a significant number of cancers makes it unreliable and not safe to be used in clinical practice. AI is not currently of sufficient accuracy to be considered in the NHS Breast Screening Programme.

Ultrasound-based radiomics and machine learning for enhanced diagnosis of knee osteoarthritis: Evaluation of diagnostic accuracy, sensitivity, specificity, and predictive value.

Kiso T, Okada Y, Kawata S, Shichiji K, Okumura E, Hatsumi N, Matsuura R, Kaminaga M, Kuwano H, Okumura E

pubmed logopapersJun 1 2025
To evaluate the usefulness of radiomics features extracted from ultrasonographic images in diagnosing and predicting the severity of knee osteoarthritis (OA). In this single-center, prospective, observational study, radiomics features were extracted from standing radiographs and ultrasonographic images of knees of patients aged 40-85 years with primary medial OA and without OA. Analysis was conducted using LIFEx software (version 7.2.n), ANOVA, and LASSO regression. The diagnostic accuracy of three different models, including a statistical model incorporating background factors and machine learning models, was evaluated. Among 491 limbs analyzed, 318 were OA and 173 were non-OA cases. The mean age was 72.7 (±8.7) and 62.6 (±11.3) years in the OA and non-OA groups, respectively. The OA group included 81 (25.5 %) men and 237 (74.5 %) women, whereas the non-OA group included 73 men (42.2 %) and 100 (57.8 %) women. A statistical model using the cutoff value of MORPHOLOGICAL_SurfaceToVolumeRatio (IBSI:2PR5) achieved a specificity of 0.98 and sensitivity of 0.47. Machine learning diagnostic models (Model 2) demonstrated areas under the curve (AUCs) of 0.88 (discriminant analysis) and 0.87 (logistic regression), with sensitivities of 0.80 and 0.81 and specificities of 0.82 and 0.80, respectively. For severity prediction, the statistical model using MORPHOLOGICAL_SurfaceToVolumeRatio (IBSI:2PR5) showed sensitivity and specificity values of 0.78 and 0.86, respectively, whereas machine learning models achieved an AUC of 0.92, sensitivity of 0.81, and specificity of 0.85 for severity prediction. The use of radiomics features in diagnosing knee OA shows potential as a supportive tool for enhancing clinicians' decision-making.
Page 10 of 15147 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.