CAPoxy: a feasibility study to investigate multispectral imaging in nailfold capillaroscopy

Authors

Taylor-Williams, M.,Khalil, I.,Manning, J.,Dinsdale, G.,Berks, M.,Porcu, L.,Wilkinson, S.,Bohndiek, S.,Murray, A.

Affiliations (1)

  • Johns Hopkins University Whiting School of Engineering

Abstract

BackgroundNailfold capillaroscopy enables visualisation of structural abnormalities in the microvasculature of patients with systemic sclerosis (SSc). The objective of this feasibility study was to determine whether multispectral imaging could provide functional assessment (differences in haemoglobin concentration or oxygenation) of capillaries to aid discrimination between healthy controls and patients with SSc. MSI of nailfold capillaries visualizes the smallest blood vessels and the impact of SSc on angiogenesis and their deformation, making it suitable for evaluating oxygenation-sensitive imaging techniques. Imaging of the nailfold capillaries offers tissue-specific oxygenation information, unlike pulse oximetry, which measures arterial blood oxygenation as a single-point measurement. MethodsThe CAPoxy study was a single-centre, cross-sectional, feasibility study of nailfold capillary multispectral imaging, comparing a cohort of patients with SSc to controls. A nine-band multispectral camera was used to image 22 individuals (10 patients with SSc and 12 controls). Linear mixed-effects models and summary statistics were used to compare the different regions of the nailfold (capillaries, surrounding edges, and outside area) between SSc and controls. A machine learning model was used to compare the two groups. ResultsPatients with SSc exhibited higher indicators of haemoglobin concentration in the capillary and adjacent regions compared to controls, which were significant in the regions surrounding the capillaries (p<0.001). There were also spectral differences between the SSc and controls groups that could indicate differences in oxygenation of the capillaries and surrounding tissue. Additionally, a machine learning model distinguished SSc patients from healthy controls with an accuracy of 84%, suggesting potential for multispectral imaging to classify SSc based on structural and functional microvascular changes. ConclusionsData indicates that multispectral imaging differentiates between patients with SSc from controls based on differences in vascular function. Further work to develop a targeted spectral camera would further improve the contrast between patients with SSc and controls, enabling better imaging. Key messagesMultispectral imaging holds promise for providing functional oxygenation measurement in nailfold capillaroscopy. Significant oxygenation differences between individuals with systemic sclerosis and healthy controls can be detected with multispectral imaging in the tissue surrounding capillaries.

Topics

rheumatology

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.