Sort by:
Page 10 of 14134 results

Automatic assessment of lower limb deformities using high-resolution X-ray images.

Rostamian R, Panahi MS, Karimpour M, Nokiani AA, Khaledi RJ, Kashani HG

pubmed logopapersMay 27 2025
Planning an osteotomy or arthroplasty surgery on a lower limb requires prior classification/identification of its deformities. The detection of skeletal landmarks and the calculation of angles required to identify the deformities are traditionally done manually, with measurement accuracy relying considerably on the experience of the individual doing the measurements. We propose a novel, image pyramid-based approach to skeletal landmark detection. The proposed approach uses a Convolutional Neural Network (CNN) that receives the raw X-ray image as input and produces the coordinates of the landmarks. The landmark estimations are modified iteratively via the error feedback method to come closer to the target. Our clinically produced full-leg X-Rays dataset is made publically available and used to train and test the network. Angular quantities are calculated based on detected landmarks. Angles are then classified as lower than normal, normal or higher than normal according to predefined ranges for a normal condition. The performance of our approach is evaluated at several levels: landmark coordinates accuracy, angles' measurement accuracy, and classification accuracy. The average absolute error (difference between automatically and manually determined coordinates) for landmarks was 0.79 ± 0.57 mm on test data, and the average absolute error (difference between automatically and manually calculated angles) for angles was 0.45 ± 0.42°. Results from multiple case studies involving high-resolution images show that the proposed approach outperforms previous deep learning-based approaches in terms of accuracy and computational cost. It also enables the automatic detection of the lower limb misalignments in full-leg x-ray images.

An orchestration learning framework for ultrasound imaging: Prompt-Guided Hyper-Perception and Attention-Matching Downstream Synchronization.

Lin Z, Li S, Wang S, Gao Z, Sun Y, Lam CT, Hu X, Yang X, Ni D, Tan T

pubmed logopapersMay 27 2025
Ultrasound imaging is pivotal in clinical diagnostics due to its affordability, portability, safety, real-time capability, and non-invasive nature. It is widely utilized for examining various organs, such as the breast, thyroid, ovary, cardiac, and more. However, the manual interpretation and annotation of ultrasound images are time-consuming and prone to variability among physicians. While single-task artificial intelligence (AI) solutions have been explored, they are not ideal for scaling AI applications in medical imaging. Foundation models, although a trending solution, often struggle with real-world medical datasets due to factors such as noise, variability, and the incapability of flexibly aligning prior knowledge with task adaptation. To address these limitations, we propose an orchestration learning framework named PerceptGuide for general-purpose ultrasound classification and segmentation. Our framework incorporates a novel orchestration mechanism based on prompted hyper-perception, which adapts to the diverse inductive biases required by different ultrasound datasets. Unlike self-supervised pre-trained models, which require extensive fine-tuning, our approach leverages supervised pre-training to directly capture task-relevant features, providing a stronger foundation for multi-task and multi-organ ultrasound imaging. To support this research, we compiled a large-scale Multi-task, Multi-organ public ultrasound dataset (M<sup>2</sup>-US), featuring images from 9 organs and 16 datasets, encompassing both classification and segmentation tasks. Our approach employs four specific prompts-Object, Task, Input, and Position-to guide the model, ensuring task-specific adaptability. Additionally, a downstream synchronization training stage is introduced to fine-tune the model for new data, significantly improving generalization capabilities and enabling real-world applications. Experimental results demonstrate the robustness and versatility of our framework in handling multi-task and multi-organ ultrasound image processing, outperforming both specialist models and existing general AI solutions. Compared to specialist models, our method improves segmentation from 82.26% to 86.45%, classification from 71.30% to 79.08%, while also significantly reducing model parameters.

Segmentation of the Left Ventricle and Its Pathologies for Acute Myocardial Infarction After Reperfusion in LGE-CMR Images.

Li S, Wu C, Feng C, Bian Z, Dai Y, Wu LM

pubmed logopapersMay 26 2025
Due to the association with higher incidence of left ventricular dysfunction and complications, segmentation of left ventricle and related pathological tissues: microvascular obstruction and myocardial infarction from late gadolinium enhancement cardiac magnetic resonance images is crucially important. However, lack of datasets, diverse shapes and locations, extreme imbalanced class, severe intensity distribution overlapping are the main challenges. We first release a late gadolinium enhancement cardiac magnetic resonance benchmark dataset LGE-LVP containing 140 patients with left ventricle myocardial infarction and concomitant microvascular obstruction. Then, a progressive deep learning model LVPSegNet is proposed to segment the left ventricle and its pathologies via adaptive region of interest extraction, sample augmentation, curriculum learning, and multiple receptive field fusion in dealing with the challenges. Comprehensive comparisons with state-of-the-art models on the internal and external datasets demonstrate that the proposed model performs the best on both geometric and clinical metrics and it most closely matched the clinician's performance. Overall, the released LGE-LVP dataset alongside the LVPSegNet we proposed offer a practical solution for automated left ventricular and its pathologies segmentation by providing data support and facilitating effective segmentation. The dataset and source codes will be released via https://github.com/DFLAG-NEU/LVPSegNet.

A dataset for quality evaluation of pelvic X-ray and diagnosis of developmental dysplasia of the hip.

Qi G, Jiao X, Li J, Qin C, Li X, Sun Z, Zhao Y, Jiang R, Zhu Z, Zhao G, Yu G

pubmed logopapersMay 26 2025
Developmental Dysplasia of the Hip (DDH) stands as one of the preeminent hip disorders prevalent in pediatric orthopedics. Automated diagnostic instruments, driven by artificial intelligence methodologies, are capable of providing substantial assistance to clinicians in the diagnosis of DDH. We have developed a dataset designated as Multitasking DDH (MTDDH), which is composed of two sub-datasets. Dataset 1 encompasses 1,250 pelvic X-ray images, with annotations demarcating four discrete regions for the evaluation of pelvic X-ray quality, in tandem with eight pivotal points serving as support for DDH diagnosis. Dataset 2 contains 906 pelvic X-ray images, and each image has been annotated with eight key points for assisting in the diagnosis of DDH. Notably, MTDDH represents the pioneering dataset engineered for the comprehensive evaluation of pelvic X-ray quality while concurrently offering the most exhaustive set of eight key points to bolster DDH diagnosis, thus fulfilling the exigency for enhanced diagnostic precision. Ultimately, we presented the elaborate process of constructing the MTDDH and furnished a concise introduction regarding its application.

Training a deep learning model to predict the anatomy irradiated in fluoroscopic x-ray images.

Guo L, Trujillo D, Duncan JR, Thomas MA

pubmed logopapersMay 26 2025
Accurate patient dosimetry estimates from fluoroscopically-guided interventions (FGIs) are hindered by limited knowledge of the specific anatomy that was irradiated. Current methods use data reported by the equipment to estimate the patient anatomy exposed during each irradiation event. We propose a deep learning algorithm to automatically match 2D fluoroscopic images with corresponding anatomical regions in computational phantoms, enabling more precise patient dose estimates. Our method involves two main steps: (1) simulating 2D fluoroscopic images, and (2) developing a deep learning algorithm to predict anatomical coordinates from these images. For part (1), we utilized DeepDRR for fast and realistic simulation of 2D x-ray images from 3D computed tomography datasets. We generated a diverse set of simulated fluoroscopic images from various regions with different field sizes. In part (2), we employed a Residual Neural Network (ResNet) architecture combined with metadata processing to effectively integrate patient-specific information (age and gender) to learn the transformation between 2D images and specific anatomical coordinates in each representative phantom. For the Modified ResNet model, we defined an allowable error range of ± 10 mm. The proposed method achieved over 90% of predictions within ± 10 mm, with strong alignment between predicted and true coordinates as confirmed by Bland-Altman analysis. Most errors were within ± 2%, with outliers beyond ± 5% primarily in Z-coordinates for infant phantoms due to their limited representation in the training data. These findings highlight the model's accuracy and its potential for precise spatial localization, while emphasizing the need for improved performance in specific anatomical regions. In this work, a comprehensive simulated 2D fluoroscopy image dataset was developed, addressing the scarcity of real clinical datasets and enabling effective training of deep-learning models. The modified ResNet successfully achieved precise prediction of anatomical coordinates from the simulated fluoroscopic images, enabling the goal of more accurate patient-specific dosimetry.

COVID-19CT+: A public dataset of CT images for COVID-19 retrospective analysis.

Sun Y, Du T, Wang B, Rahaman MM, Wang X, Huang X, Jiang T, Grzegorzek M, Sun H, Xu J, Li C

pubmed logopapersMay 23 2025
Background and objectiveCOVID-19 is considered as the biggest global health disaster in the 21st century, and it has a huge impact on the world.MethodsThis paper publishes a publicly available dataset of CT images of multiple types of pneumonia (COVID-19CT+). Specifically, the dataset contains 409,619 CT images of 1333 patients, with subset-A containing 312 community-acquired pneumonia cases and subset-B containing 1021 COVID-19 cases. In order to demonstrate that there are differences in the methods used to classify COVID-19CT+ images across time, we selected 13 classical machine learning classifiers and 5 deep learning classifiers to test the image classification task.ResultsIn this study, two sets of experiments are conducted using traditional machine learning and deep learning methods, the first set of experiments is the classification of COVID-19 in Subset-B versus COVID-19 white lung disease, and the second set of experiments is the classification of community-acquired pneumonia in Subset-A versus COVID-19 in Subset-B, demonstrating that the different periods of the methods differed on COVID-19CT+. On the first set of experiments, the accuracy of traditional machine learning reaches a maximum of 97.3% and a minimum of only 62.6%. Deep learning algorithms reaches a maximum of 97.9% and a minimum of 85.7%. On the second set of experiments, traditional machine learning reaches a high of 94.6% accuracy and a low of 56.8%. The deep learning algorithm reaches a high of 91.9% and a low of 86.3%.ConclusionsThe COVID-19CT+ in this study covers a large number of CT images of patients with COVID-19 and community-acquired pneumonia and is one of the largest datasets available. We expect that this dataset will attract more researchers to participate in exploring new automated diagnostic algorithms to contribute to the improvement of the diagnostic accuracy and efficiency of COVID-19.

EnsembleEdgeFusion: advancing semantic segmentation in microvascular decompression imaging with innovative ensemble techniques.

Dhiyanesh B, Vijayalakshmi M, Saranya P, Viji D

pubmed logopapersMay 23 2025
Semantic segmentation involves an imminent part in the investigation of medical images, particularly in the domain of microvascular decompression, where publicly available datasets are scarce, and expert annotation is demanding. In response to this challenge, this study presents a meticulously curated dataset comprising 2003 RGB microvascular decompression images, each intricately paired with annotated masks. Extensive data preprocessing and augmentation strategies were employed to fortify the training dataset, enhancing the robustness of proposed deep learning model. Numerous up-to-date semantic segmentation approaches, including DeepLabv3+, U-Net, DilatedFastFCN with JPU, DANet, and a custom Vanilla architecture, were trained and evaluated using diverse performance metrics. Among these models, DeepLabv3 + emerged as a strong contender, notably excelling in F1 score. Innovatively, ensemble techniques, such as stacking and bagging, were introduced to further elevate segmentation performance. Bagging, notably with the Naïve Bayes approach, exhibited significant improvements, underscoring the potential of ensemble methods in medical image segmentation. The proposed EnsembleEdgeFusion technique exhibited superior loss reduction during training compared to DeepLabv3 + and achieved maximum Mean Intersection over Union (MIoU) scores of 77.73%, surpassing other models. Category-wise analysis affirmed its superiority in accurately delineating various categories within the test dataset.

A Unified Multi-Scale Attention-Based Network for Automatic 3D Segmentation of Lung Parenchyma & Nodules In Thoracic CT Images

Muhammad Abdullah, Furqan Shaukat

arxiv logopreprintMay 23 2025
Lung cancer has been one of the major threats across the world with the highest mortalities. Computer-aided detection (CAD) can help in early detection and thus can help increase the survival rate. Accurate lung parenchyma segmentation (to include the juxta-pleural nodules) and lung nodule segmentation, the primary symptom of lung cancer, play a crucial role in the overall accuracy of the Lung CAD pipeline. Lung nodule segmentation is quite challenging because of the diverse nodule types and other inhibit structures present within the lung lobes. Traditional machine/deep learning methods suffer from generalization and robustness. Recent Vision Language Models/Foundation Models perform well on the anatomical level, but they suffer on fine-grained segmentation tasks, and their semi-automatic nature limits their effectiveness in real-time clinical scenarios. In this paper, we propose a novel method for accurate 3D segmentation of lung parenchyma and lung nodules. The proposed architecture is an attention-based network with residual blocks at each encoder-decoder state. Max pooling is replaced by strided convolutions at the encoder, and trilinear interpolation is replaced by transposed convolutions at the decoder to maximize the number of learnable parameters. Dilated convolutions at each encoder-decoder stage allow the model to capture the larger context without increasing computational costs. The proposed method has been evaluated extensively on one of the largest publicly available datasets, namely LUNA16, and is compared with recent notable work in the domain using standard performance metrics like Dice score, IOU, etc. It can be seen from the results that the proposed method achieves better performance than state-of-the-art methods. The source code, datasets, and pre-processed data can be accessed using the link: https://github.com/EMeRALDsNRPU/Attention-Based-3D-ResUNet.

X-GRM: Large Gaussian Reconstruction Model for Sparse-view X-rays to Computed Tomography

Yifan Liu, Wuyang Li, Weihao Yu, Chenxin Li, Alexandre Alahi, Max Meng, Yixuan Yuan

arxiv logopreprintMay 21 2025
Computed Tomography serves as an indispensable tool in clinical workflows, providing non-invasive visualization of internal anatomical structures. Existing CT reconstruction works are limited to small-capacity model architecture, inflexible volume representation, and small-scale training data. In this paper, we present X-GRM (X-ray Gaussian Reconstruction Model), a large feedforward model for reconstructing 3D CT from sparse-view 2D X-ray projections. X-GRM employs a scalable transformer-based architecture to encode an arbitrary number of sparse X-ray inputs, where tokens from different views are integrated efficiently. Then, tokens are decoded into a new volume representation, named Voxel-based Gaussian Splatting (VoxGS), which enables efficient CT volume extraction and differentiable X-ray rendering. To support the training of X-GRM, we collect ReconX-15K, a large-scale CT reconstruction dataset containing around 15,000 CT/X-ray pairs across diverse organs, including the chest, abdomen, pelvis, and tooth etc. This combination of a high-capacity model, flexible volume representation, and large-scale training data empowers our model to produce high-quality reconstructions from various testing inputs, including in-domain and out-domain X-ray projections. Project Page: https://github.com/CUHK-AIM-Group/X-GRM.

VET-DINO: Learning Anatomical Understanding Through Multi-View Distillation in Veterinary Imaging

Andre Dourson, Kylie Taylor, Xiaoli Qiao, Michael Fitzke

arxiv logopreprintMay 21 2025
Self-supervised learning has emerged as a powerful paradigm for training deep neural networks, particularly in medical imaging where labeled data is scarce. While current approaches typically rely on synthetic augmentations of single images, we propose VET-DINO, a framework that leverages a unique characteristic of medical imaging: the availability of multiple standardized views from the same study. Using a series of clinical veterinary radiographs from the same patient study, we enable models to learn view-invariant anatomical structures and develop an implied 3D understanding from 2D projections. We demonstrate our approach on a dataset of 5 million veterinary radiographs from 668,000 canine studies. Through extensive experimentation, including view synthesis and downstream task performance, we show that learning from real multi-view pairs leads to superior anatomical understanding compared to purely synthetic augmentations. VET-DINO achieves state-of-the-art performance on various veterinary imaging tasks. Our work establishes a new paradigm for self-supervised learning in medical imaging that leverages domain-specific properties rather than merely adapting natural image techniques.
Page 10 of 14134 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.