Sort by:
Page 10 of 59587 results

RoentMod: A Synthetic Chest X-Ray Modification Model to Identify and Correct Image Interpretation Model Shortcuts

Lauren H. Cooke, Matthias Jung, Jan M. Brendel, Nora M. Kerkovits, Borek Foldyna, Michael T. Lu, Vineet K. Raghu

arxiv logopreprintSep 10 2025
Chest radiographs (CXRs) are among the most common tests in medicine. Automated image interpretation may reduce radiologists\' workload and expand access to diagnostic expertise. Deep learning multi-task and foundation models have shown strong performance for CXR interpretation but are vulnerable to shortcut learning, where models rely on spurious and off-target correlations rather than clinically relevant features to make decisions. We introduce RoentMod, a counterfactual image editing framework that generates anatomically realistic CXRs with user-specified, synthetic pathology while preserving unrelated anatomical features of the original scan. RoentMod combines an open-source medical image generator (RoentGen) with an image-to-image modification model without requiring retraining. In reader studies with board-certified radiologists and radiology residents, RoentMod-produced images appeared realistic in 93\% of cases, correctly incorporated the specified finding in 89-99\% of cases, and preserved native anatomy comparable to real follow-up CXRs. Using RoentMod, we demonstrate that state-of-the-art multi-task and foundation models frequently exploit off-target pathology as shortcuts, limiting their specificity. Incorporating RoentMod-generated counterfactual images during training mitigated this vulnerability, improving model discrimination across multiple pathologies by 3-19\% AUC in internal validation and by 1-11\% for 5 out of 6 tested pathologies in external testing. These findings establish RoentMod as a broadly applicable tool for probing and correcting shortcut learning in medical AI. By enabling controlled counterfactual interventions, RoentMod enhances the robustness and interpretability of CXR interpretation models and provides a generalizable strategy for improving foundation models in medical imaging.

A comprehensive review of techniques, algorithms, advancements, challenges, and clinical applications of multi-modal medical image fusion for improved diagnosis.

Zubair M, Hussain M, Albashrawi MA, Bendechache M, Owais M

pubmed logopapersSep 9 2025
Multi-modal medical image fusion (MMIF) is increasingly recognized as an essential technique for enhancing diagnostic precision and facilitating effective clinical decision-making within computer-aided diagnosis systems. MMIF combines data from X-ray, MRI, CT, PET, SPECT, and ultrasound to create detailed, clinically useful images of patient anatomy and pathology. These integrated representations significantly advance diagnostic accuracy, lesion detection, and segmentation. This comprehensive review meticulously surveys the evolution, methodologies, algorithms, current advancements, and clinical applications of MMIF. We present a critical comparative analysis of traditional fusion approaches, including pixel-, feature-, and decision-level methods, and delves into recent advancements driven by deep learning, generative models, and transformer-based architectures. A critical comparative analysis is presented between these conventional methods and contemporary techniques, highlighting differences in robustness, computational efficiency, and interpretability. The article addresses extensive clinical applications across oncology, neurology, and cardiology, demonstrating MMIF's vital role in precision medicine through improved patient-specific therapeutic outcomes. Moreover, the review thoroughly investigates the persistent challenges affecting MMIF's broad adoption, including issues related to data privacy, heterogeneity, computational complexity, interpretability of AI-driven algorithms, and integration within clinical workflows. It also identifies significant future research avenues, such as the integration of explainable AI, adoption of privacy-preserving federated learning frameworks, development of real-time fusion systems, and standardization efforts for regulatory compliance. This review organizes key knowledge, outlines challenges, and highlights opportunities, guiding researchers, clinicians, and developers in advancing MMIF for routine clinical use and promoting personalized healthcare. To support further research, we provide a GitHub repository that includes popular multi-modal medical imaging datasets along with recent models in our shared GitHub repository.

MedicalPatchNet: A Patch-Based Self-Explainable AI Architecture for Chest X-ray Classification

Patrick Wienholt, Christiane Kuhl, Jakob Nikolas Kather, Sven Nebelung, Daniel Truhn

arxiv logopreprintSep 9 2025
Deep neural networks excel in radiological image classification but frequently suffer from poor interpretability, limiting clinical acceptance. We present MedicalPatchNet, an inherently self-explainable architecture for chest X-ray classification that transparently attributes decisions to distinct image regions. MedicalPatchNet splits images into non-overlapping patches, independently classifies each patch, and aggregates predictions, enabling intuitive visualization of each patch's diagnostic contribution without post-hoc techniques. Trained on the CheXpert dataset (223,414 images), MedicalPatchNet matches the classification performance (AUROC 0.907 vs. 0.908) of EfficientNet-B0, while substantially improving interpretability: MedicalPatchNet demonstrates substantially improved interpretability with higher pathology localization accuracy (mean hit-rate 0.485 vs. 0.376 with Grad-CAM) on the CheXlocalize dataset. By providing explicit, reliable explanations accessible even to non-AI experts, MedicalPatchNet mitigates risks associated with shortcut learning, thus improving clinical trust. Our model is publicly available with reproducible training and inference scripts and contributes to safer, explainable AI-assisted diagnostics across medical imaging domains. We make the code publicly available: https://github.com/TruhnLab/MedicalPatchNet

Faster, Self-Supervised Super-Resolution for Anisotropic Multi-View MRI Using a Sparse Coordinate Loss

Maja Schlereth, Moritz Schillinger, Katharina Breininger

arxiv logopreprintSep 9 2025
Acquiring images in high resolution is often a challenging task. Especially in the medical sector, image quality has to be balanced with acquisition time and patient comfort. To strike a compromise between scan time and quality for Magnetic Resonance (MR) imaging, two anisotropic scans with different low-resolution (LR) orientations can be acquired. Typically, LR scans are analyzed individually by radiologists, which is time consuming and can lead to inaccurate interpretation. To tackle this, we propose a novel approach for fusing two orthogonal anisotropic LR MR images to reconstruct anatomical details in a unified representation. Our multi-view neural network is trained in a self-supervised manner, without requiring corresponding high-resolution (HR) data. To optimize the model, we introduce a sparse coordinate-based loss, enabling the integration of LR images with arbitrary scaling. We evaluate our method on MR images from two independent cohorts. Our results demonstrate comparable or even improved super-resolution (SR) performance compared to state-of-the-art (SOTA) self-supervised SR methods for different upsampling scales. By combining a patient-agnostic offline and a patient-specific online phase, we achieve a substantial speed-up of up to ten times for patient-specific reconstruction while achieving similar or better SR quality. Code is available at https://github.com/MajaSchle/tripleSR.

Self-Supervised Cross-Encoder for Neurodegenerative Disease Diagnosis

Fangqi Cheng, Yingying Zhao, Xiaochen Yang

arxiv logopreprintSep 9 2025
Deep learning has shown significant potential in diagnosing neurodegenerative diseases from MRI data. However, most existing methods rely heavily on large volumes of labeled data and often yield representations that lack interpretability. To address both challenges, we propose a novel self-supervised cross-encoder framework that leverages the temporal continuity in longitudinal MRI scans for supervision. This framework disentangles learned representations into two components: a static representation, constrained by contrastive learning, which captures stable anatomical features; and a dynamic representation, guided by input-gradient regularization, which reflects temporal changes and can be effectively fine-tuned for downstream classification tasks. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that our method achieves superior classification accuracy and improved interpretability. Furthermore, the learned representations exhibit strong zero-shot generalization on the Open Access Series of Imaging Studies (OASIS) dataset and cross-task generalization on the Parkinson Progression Marker Initiative (PPMI) dataset. The code for the proposed method will be made publicly available.

Leveraging Information Divergence for Robust Semi-Supervised Fetal Ultrasound Image Segmentation

Fangyijie Wang, Guénolé Silvestre, Kathleen M. Curran

arxiv logopreprintSep 8 2025
Maternal-fetal Ultrasound is the primary modality for monitoring fetal development, yet automated segmentation remains challenging due to the scarcity of high-quality annotations. To address this limitation, we propose a semi-supervised learning framework that leverages information divergence for robust fetal ultrasound segmentation. Our method employs a lightweight convolutional network (1.47M parameters) and a Transformer-based network, trained jointly with labelled data through standard supervision and with unlabelled data via cross-supervision. To encourage consistent and confident predictions, we introduce an information divergence loss that combines per-pixel Kullback-Leibler divergence and Mutual Information Gap, effectively reducing prediction disagreement between the two models. In addition, we apply mixup on unlabelled samples to further enhance robustness. Experiments on two fetal ultrasound datasets demonstrate that our approach consistently outperforms seven state-of-the-art semi-supervised methods. When only 5% of training data is labelled, our framework improves the Dice score by 2.39%, reduces the 95% Hausdorff distance by 14.90, and decreases the Average Surface Distance by 4.18. These results highlight the effectiveness of leveraging information divergence for annotation-efficient and robust medical image segmentation. Our code is publicly available on GitHub.

Curia: A Multi-Modal Foundation Model for Radiology

Corentin Dancette, Julien Khlaut, Antoine Saporta, Helene Philippe, Elodie Ferreres, Baptiste Callard, Théo Danielou, Léo Alberge, Léo Machado, Daniel Tordjman, Julie Dupuis, Korentin Le Floch, Jean Du Terrail, Mariam Moshiri, Laurent Dercle, Tom Boeken, Jules Gregory, Maxime Ronot, François Legou, Pascal Roux, Marc Sapoval, Pierre Manceron, Paul Hérent

arxiv logopreprintSep 8 2025
AI-assisted radiological interpretation is based on predominantly narrow, single-task models. This approach is impractical for covering the vast spectrum of imaging modalities, diseases, and radiological findings. Foundation models (FMs) hold the promise of broad generalization across modalities and in low-data settings. However, this potential has remained largely unrealized in radiology. We introduce Curia, a foundation model trained on the entire cross-sectional imaging output of a major hospital over several years, which to our knowledge is the largest such corpus of real-world data-encompassing 150,000 exams (130 TB). On a newly curated 19-task external validation benchmark, Curia accurately identifies organs, detects conditions like brain hemorrhages and myocardial infarctions, and predicts outcomes in tumor staging. Curia meets or surpasses the performance of radiologists and recent foundation models, and exhibits clinically significant emergent properties in cross-modality, and low-data regimes. To accelerate progress, we release our base model's weights at https://huggingface.co/raidium/curia.

Barlow-Swin: Toward a novel siamese-based segmentation architecture using Swin-Transformers

Morteza Kiani Haftlang, Mohammadhossein Malmir, Foroutan Parand, Umberto Michelucci, Safouane El Ghazouali

arxiv logopreprintSep 8 2025
Medical image segmentation is a critical task in clinical workflows, particularly for the detection and delineation of pathological regions. While convolutional architectures like U-Net have become standard for such tasks, their limited receptive field restricts global context modeling. Recent efforts integrating transformers have addressed this, but often result in deep, computationally expensive models unsuitable for real-time use. In this work, we present a novel end-to-end lightweight architecture designed specifically for real-time binary medical image segmentation. Our model combines a Swin Transformer-like encoder with a U-Net-like decoder, connected via skip pathways to preserve spatial detail while capturing contextual information. Unlike existing designs such as Swin Transformer or U-Net, our architecture is significantly shallower and competitively efficient. To improve the encoder's ability to learn meaningful features without relying on large amounts of labeled data, we first train it using Barlow Twins, a self-supervised learning method that helps the model focus on important patterns by reducing unnecessary repetition in the learned features. After this pretraining, we fine-tune the entire model for our specific task. Experiments on benchmark binary segmentation tasks demonstrate that our model achieves competitive accuracy with substantially reduced parameter count and faster inference, positioning it as a practical alternative for deployment in real-time and resource-limited clinical environments. The code for our method is available at Github repository: https://github.com/mkianih/Barlow-Swin.

MedSeqFT: Sequential Fine-tuning Foundation Models for 3D Medical Image Segmentation

Yiwen Ye, Yicheng Wu, Xiangde Luo, He Zhang, Ziyang Chen, Ting Dang, Yanning Zhang, Yong Xia

arxiv logopreprintSep 7 2025
Foundation models have become a promising paradigm for advancing medical image analysis, particularly for segmentation tasks where downstream applications often emerge sequentially. Existing fine-tuning strategies, however, remain limited: parallel fine-tuning isolates tasks and fails to exploit shared knowledge, while multi-task fine-tuning requires simultaneous access to all datasets and struggles with incremental task integration. To address these challenges, we propose MedSeqFT, a sequential fine-tuning framework that progressively adapts pre-trained models to new tasks while refining their representational capacity. MedSeqFT introduces two core components: (1) Maximum Data Similarity (MDS) selection, which identifies downstream samples most representative of the original pre-training distribution to preserve general knowledge, and (2) Knowledge and Generalization Retention Fine-Tuning (K&G RFT), a LoRA-based knowledge distillation scheme that balances task-specific adaptation with the retention of pre-trained knowledge. Extensive experiments on two multi-task datasets covering ten 3D segmentation tasks demonstrate that MedSeqFT consistently outperforms state-of-the-art fine-tuning strategies, yielding substantial performance gains (e.g., an average Dice improvement of 3.0%). Furthermore, evaluations on two unseen tasks (COVID-19-20 and Kidney) verify that MedSeqFT enhances transferability, particularly for tumor segmentation. Visual analyses of loss landscapes and parameter variations further highlight the robustness of MedSeqFT. These results establish sequential fine-tuning as an effective, knowledge-retentive paradigm for adapting foundation models to evolving clinical tasks. Code will be released.

Prenatal diagnosis of cerebellar hypoplasia in fetal ultrasound using deep learning under the constraint of the anatomical structures of the cerebellum and cistern.

Wu X, Liu F, Xu G, Ma Y, Cheng C, He R, Yang A, Gan J, Liang J, Wu X, Zhao S

pubmed logopapersSep 5 2025
The objective of this retrospective study is to develop and validate an artificial intelligence model constrained by the anatomical structure of the brain with the aim of improving the accuracy of prenatal diagnosis of fetal cerebellar hypoplasia using ultrasound imaging. Fetal central nervous system dysplasia is one of the most prevalent congenital malformations, and cerebellar hypoplasia represents a significant manifestation of this anomaly. Accurate clinical diagnosis is of great importance for the purpose of prenatal screening of fetal health. Although ultrasound has been extensively utilized to assess fetal development, the accurate assessment of cerebellar development remains challenging due to the inherent limitations of ultrasound imaging, including low resolution, artifacts, and acoustic shadowing of the skull. This retrospective study included 302 cases diagnosed with cerebellar hypoplasia and 549 normal pregnancies collected from Maternal and Child Health Hospital of Hubei Province between September 2019 and September 2023. For each case, experienced ultrasound physicians selected appropriate brain ultrasound images to delineate the boundaries of the skull, cerebellum, and cerebellomedullary cistern. These cases were divided into one training set and two test sets, based on the examination dates. This study then proposed a dual-branch deep learning classification network, anatomical structure-constrained network (ASC-Net), which took ultrasound images and anatomical structure masks as separate inputs. The performance of the ASC-Net was extensively evaluated and compared with several state-of-the-art deep learning networks. The impact of anatomical structures on the performance of ASC-Net was carefully examined. ASC-Net demonstrated superior performance in the diagnosis of cerebellar hypoplasia, achieving classification accuracies of 0.9778 and 0.9222, as well as areas under the receiver operating characteristic curve of 0.9986 and 0.9265 on the two test sets. These results significantly outperformed several state-of-the-art networks on the same dataset. In comparison to other studies on cerebellar hypoplasia auxiliary diagnosis, ASC-Net also demonstrated comparable or even better performance. A subgroup analysis revealed that ASC-Net was more capable of distinguishing cerebellar hypoplasia in cases with gestational weeks greater than 30 weeks. Furthermore, when constrained by anatomical structures of both the cerebellum and cistern, ASC-Net exhibited the best performance compared to other kinds of structural constraint. The development and validation of ASC-Net have significantly enhanced the accuracy of prenatal diagnosis of cerebellar hypoplasia using ultrasound images. This study highlights the importance of anatomical structures of the fetal cerebellum and cistern on the performance of the diagnostic artificial intelligence model in ultrasound. This might provide new insights for clinical diagnosis of cerebellar hypoplasia, assist clinicians in providing more targeted advice and treatment during pregnancy, and contribute to improved perinatal healthcare. ASC-Net is open-sourced and publicly available in a GitHub repository at https://github.com/Wwwwww111112/ASC-Net .
Page 10 of 59587 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.