Sort by:
Page 10 of 36351 results

Inference of single cell profiles from histology stains with the Single-Cell omics from Histology Analysis Framework (SCHAF)

Comiter, C., Chen, X., Vaishnav, E. D., Kobayashi-Kirschvink, K. J., Ciapmricotti, M., Zhang, K., Murray, J., Monticolo, F., Qi, J., Tanaka, R., Brodowska, S. E., Li, B., Yang, Y., Rodig, S. J., Karatza, A., Quintanal Villalonga, A., Turner, M., Pfaff, K. L., Jane-Valbuena, J., Slyper, M., Waldman, J., Vigneau, S., Wu, J., Blosser, T. R., Segerstolpe, A., Abravanel, D., Wagle, N., Demehri, S., Zhuang, X., Rudin, C. M., Klughammer, J., Rozenblatt-Rosen, O., Stultz, C. M., Shu, J., Regev, A.

biorxiv logopreprintJun 13 2025
Tissue biology involves an intricate balance between cell-intrinsic processes and interactions between cells organized in specific spatial patterns, which can be respectively captured by single cell profiling methods, such as single cell RNA-seq (scRNA-seq) and spatial transcriptomics, and histology imaging data, such as Hematoxylin-and-Eosin (H&E) stains. While single cell profiles provide rich molecular information, they can be challenging to collect routinely in the clinic and either lack spatial resolution or high gene throughput. Conversely, histological H&E assays have been a cornerstone of tissue pathology for decades, but do not directly report on molecular details, although the observed structure they capture arises from molecules and cells. Here, we leverage vision transformers and adversarial deep learning to develop the Single Cell omics from Histology Analysis Framework (SCHAF), which generates a tissue sample's spatially-resolved whole transcriptome single cell omics dataset from its H&E histology image. We demonstrate SCHAF on a variety of tissues--including lung cancer, metastatic breast cancer, placentae, and whole mouse pups--training with matched samples analyzed by sc/snRNA-seq, H&E staining, and, when available, spatial transcriptomics. SCHAF generated appropriate single cell profiles from histology images in test data, related them spatially, and compared well to ground-truth scRNA-Seq, expert pathologist annotations, or direct spatial transcriptomic measurements, with some limitations. SCHAF opens the way to next-generation H&E analyses and an integrated understanding of cell and tissue biology in health and disease.

Taming Stable Diffusion for Computed Tomography Blind Super-Resolution

Chunlei Li, Yilei Shi, Haoxi Hu, Jingliang Hu, Xiao Xiang Zhu, Lichao Mou

arxiv logopreprintJun 13 2025
High-resolution computed tomography (CT) imaging is essential for medical diagnosis but requires increased radiation exposure, creating a critical trade-off between image quality and patient safety. While deep learning methods have shown promise in CT super-resolution, they face challenges with complex degradations and limited medical training data. Meanwhile, large-scale pre-trained diffusion models, particularly Stable Diffusion, have demonstrated remarkable capabilities in synthesizing fine details across various vision tasks. Motivated by this, we propose a novel framework that adapts Stable Diffusion for CT blind super-resolution. We employ a practical degradation model to synthesize realistic low-quality images and leverage a pre-trained vision-language model to generate corresponding descriptions. Subsequently, we perform super-resolution using Stable Diffusion with a specialized controlling strategy, conditioned on both low-resolution inputs and the generated text descriptions. Extensive experiments show that our method outperforms existing approaches, demonstrating its potential for achieving high-quality CT imaging at reduced radiation doses. Our code will be made publicly available.

Exploring the Effectiveness of Deep Features from Domain-Specific Foundation Models in Retinal Image Synthesis

Zuzanna Skorniewska, Bartlomiej W. Papiez

arxiv logopreprintJun 13 2025
The adoption of neural network models in medical imaging has been constrained by strict privacy regulations, limited data availability, high acquisition costs, and demographic biases. Deep generative models offer a promising solution by generating synthetic data that bypasses privacy concerns and addresses fairness by producing samples for under-represented groups. However, unlike natural images, medical imaging requires validation not only for fidelity (e.g., Fr\'echet Inception Score) but also for morphological and clinical accuracy. This is particularly true for colour fundus retinal imaging, which requires precise replication of the retinal vascular network, including vessel topology, continuity, and thickness. In this study, we in-vestigated whether a distance-based loss function based on deep activation layers of a large foundational model trained on large corpus of domain data, colour fundus imaging, offers advantages over a perceptual loss and edge-detection based loss functions. Our extensive validation pipeline, based on both domain-free and domain specific tasks, suggests that domain-specific deep features do not improve autoen-coder image generation. Conversely, our findings highlight the effectiveness of con-ventional edge detection filters in improving the sharpness of vascular structures in synthetic samples.

Prediction of functional outcome after traumatic brain injury: a narrative review.

Iaquaniello C, Scordo E, Robba C

pubmed logopapersJun 13 2025
To synthesize current evidence on prognostic factors, tools, and strategies influencing functional outcomes in patients with traumatic brain injury (TBI), with a focus on the acute and postacute phases of care. Key early predictors such as Glasgow Coma Scale (GCS) scores, pupillary reactivity, and computed tomography (CT) imaging findings remain fundamental in guiding clinical decision-making. Prognostic models like IMPACT and CRASH enhance early risk stratification, while outcome measures such as the Glasgow Outcome Scale-Extended (GOS-E) provide structured long-term assessments. Despite their utility, heterogeneity in assessment approaches and treatment protocols continues to limit consistency in outcome predictions. Recent advancements highlight the value of fluid biomarkers like neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP), which offer promising avenues for improved accuracy. Additionally, artificial intelligence models are emerging as powerful tools to integrate complex datasets and refine individualized outcome forecasting. Neurological prognostication after TBI is evolving through the integration of clinical, radiological, molecular, and computational data. Although standardized models and scales remain foundational, emerging technologies and therapies - such as biomarkers, machine learning, and neurostimulants - represent a shift toward more personalized and actionable strategies to optimize recovery and long-term function.

MRI-CORE: A Foundation Model for Magnetic Resonance Imaging

Haoyu Dong, Yuwen Chen, Hanxue Gu, Nicholas Konz, Yaqian Chen, Qihang Li, Maciej A. Mazurowski

arxiv logopreprintJun 13 2025
The widespread use of Magnetic Resonance Imaging (MRI) and the rise of deep learning have enabled the development of powerful predictive models for a wide range of diagnostic tasks in MRI, such as image classification or object segmentation. However, training models for specific new tasks often requires large amounts of labeled data, which is difficult to obtain due to high annotation costs and data privacy concerns. To circumvent this issue, we introduce MRI-CORE (MRI COmprehensive Representation Encoder), a vision foundation model pre-trained using more than 6 million slices from over 110,000 MRI volumes across 18 main body locations. Experiments on five diverse object segmentation tasks in MRI demonstrate that MRI-CORE can significantly improve segmentation performance in realistic scenarios with limited labeled data availability, achieving an average gain of 6.97% 3D Dice Coefficient using only 10 annotated slices per task. We further demonstrate new model capabilities in MRI such as classification of image properties including body location, sequence type and institution, and zero-shot segmentation. These results highlight the value of MRI-CORE as a generalist vision foundation model for MRI, potentially lowering the data annotation resource barriers for many applications.

OneTouch Automated Photoacoustic and Ultrasound Imaging of Breast in Standing Pose.

Zhang H, Zheng E, Zheng W, Huang C, Xi Y, Cheng Y, Yu S, Chakraborty S, Bonaccio E, Takabe K, Fan XC, Xu W, Xia J

pubmed logopapersJun 12 2025
We developed an automated photoacoustic and ultrasound breast tomography system that images the patient in the standing pose. The system, named OneTouch-PAT, utilized linear transducer arrays with optical-acoustic combiners for effective dual-modal imaging. During scanning, subjects only need to gently attach their breasts to the imaging window, and co-registered three-dimensional ultrasonic and photoacoustic images of the breast can be obtained within one minute. Our system has a large field of view of 17 cm by 15 cm and achieves an imaging depth of 3 cm with sub-millimeter resolution. A three-dimensional deep-learning network was also developed to further improve the image quality by improving the 3D resolution, enhancing vasculature, eliminating skin signals, and reducing noise. The performance of the system was tested on four healthy subjects and 61 patients with breast cancer. Our results indicate that the ultrasound structural information can be combined with the photoacoustic vascular information for better tissue characterization. Representative cases from different molecular subtypes have indicated different photoacoustic and ultrasound features that could potentially be used for imaging-based cancer classification. Statistical analysis among all patients indicates that the regional photoacoustic intensity and vessel branching points are indicators of breast malignancy. These promising results suggest that our system could significantly enhance breast cancer diagnosis and classification.

MedSeg-R: Reasoning Segmentation in Medical Images with Multimodal Large Language Models

Yu Huang, Zelin Peng, Yichen Zhao, Piao Yang, Xiaokang Yang, Wei Shen

arxiv logopreprintJun 12 2025
Medical image segmentation is crucial for clinical diagnosis, yet existing models are limited by their reliance on explicit human instructions and lack the active reasoning capabilities to understand complex clinical questions. While recent advancements in multimodal large language models (MLLMs) have improved medical question-answering (QA) tasks, most methods struggle to generate precise segmentation masks, limiting their application in automatic medical diagnosis. In this paper, we introduce medical image reasoning segmentation, a novel task that aims to generate segmentation masks based on complex and implicit medical instructions. To address this, we propose MedSeg-R, an end-to-end framework that leverages the reasoning abilities of MLLMs to interpret clinical questions while also capable of producing corresponding precise segmentation masks for medical images. It is built on two core components: 1) a global context understanding module that interprets images and comprehends complex medical instructions to generate multi-modal intermediate tokens, and 2) a pixel-level grounding module that decodes these tokens to produce precise segmentation masks and textual responses. Furthermore, we introduce MedSeg-QA, a large-scale dataset tailored for the medical image reasoning segmentation task. It includes over 10,000 image-mask pairs and multi-turn conversations, automatically annotated using large language models and refined through physician reviews. Experiments show MedSeg-R's superior performance across several benchmarks, achieving high segmentation accuracy and enabling interpretable textual analysis of medical images.

Generalist Models in Medical Image Segmentation: A Survey and Performance Comparison with Task-Specific Approaches

Andrea Moglia, Matteo Leccardi, Matteo Cavicchioli, Alice Maccarini, Marco Marcon, Luca Mainardi, Pietro Cerveri

arxiv logopreprintJun 12 2025
Following the successful paradigm shift of large language models, leveraging pre-training on a massive corpus of data and fine-tuning on different downstream tasks, generalist models have made their foray into computer vision. The introduction of Segment Anything Model (SAM) set a milestone on segmentation of natural images, inspiring the design of a multitude of architectures for medical image segmentation. In this survey we offer a comprehensive and in-depth investigation on generalist models for medical image segmentation. We start with an introduction on the fundamentals concepts underpinning their development. Then, we provide a taxonomy on the different declinations of SAM in terms of zero-shot, few-shot, fine-tuning, adapters, on the recent SAM 2, on other innovative models trained on images alone, and others trained on both text and images. We thoroughly analyze their performances at the level of both primary research and best-in-literature, followed by a rigorous comparison with the state-of-the-art task-specific models. We emphasize the need to address challenges in terms of compliance with regulatory frameworks, privacy and security laws, budget, and trustworthy artificial intelligence (AI). Finally, we share our perspective on future directions concerning synthetic data, early fusion, lessons learnt from generalist models in natural language processing, agentic AI and physical AI, and clinical translation.

Exploring the limit of image resolution for human expert classification of vascular ultrasound images in giant cell arteritis and healthy subjects: the GCA-US-AI project.

Bauer CJ, Chrysidis S, Dejaco C, Koster MJ, Kohler MJ, Monti S, Schmidt WA, Mukhtyar CB, Karakostas P, Milchert M, Ponte C, Duftner C, de Miguel E, Hocevar A, Iagnocco A, Terslev L, Døhn UM, Nielsen BD, Juche A, Seitz L, Keller KK, Karalilova R, Daikeler T, Mackie SL, Torralba K, van der Geest KSM, Boumans D, Bosch P, Tomelleri A, Aschwanden M, Kermani TA, Diamantopoulos A, Fredberg U, Inanc N, Petzinna SM, Albarqouni S, Behning C, Schäfer VS

pubmed logopapersJun 12 2025
Prompt diagnosis of giant cell arteritis (GCA) with ultrasound is crucial for preventing severe ocular and other complications, yet expertise in ultrasound performance is scarce. The development of an artificial intelligence (AI)-based assistant that facilitates ultrasound image classification and helps to diagnose GCA early promises to close the existing gap. In the projection of the planned AI, this study investigates the minimum image resolution required for human experts to reliably classify ultrasound images of arteries commonly affected by GCA for the presence or absence of GCA. Thirty-one international experts in GCA ultrasonography participated in a web-based exercise. They were asked to classify 10 ultrasound images for each of 5 vascular segments as GCA, normal, or not able to classify. The following segments were assessed: (1) superficial common temporal artery, (2) its frontal and (3) parietal branches (all in transverse view), (4) axillary artery in transverse view, and 5) axillary artery in longitudinal view. Identical images were shown at different resolutions, namely 32 × 32, 64 × 64, 128 × 128, 224 × 224, and 512 × 512 pixels, thereby resulting in a total of 250 images to be classified by every study participant. Classification performance improved with increasing resolution up to a threshold, plateauing at 224 × 224 pixels. At 224 × 224 pixels, the overall classification sensitivity was 0.767 (95% CI, 0.737-0.796), and specificity was 0.862 (95% CI, 0.831-0.888). A resolution of 224 × 224 pixels ensures reliable human expert classification and aligns with the input requirements of many common AI-based architectures. Thus, the results of this study substantially guide projected AI development.

Score-based Generative Diffusion Models to Synthesize Full-dose FDG Brain PET from MRI in Epilepsy Patients

Jiaqi Wu, Jiahong Ouyang, Farshad Moradi, Mohammad Mehdi Khalighi, Greg Zaharchuk

arxiv logopreprintJun 12 2025
Fluorodeoxyglucose (FDG) PET to evaluate patients with epilepsy is one of the most common applications for simultaneous PET/MRI, given the need to image both brain structure and metabolism, but is suboptimal due to the radiation dose in this young population. Little work has been done synthesizing diagnostic quality PET images from MRI data or MRI data with ultralow-dose PET using advanced generative AI methods, such as diffusion models, with attention to clinical evaluations tailored for the epilepsy population. Here we compared the performance of diffusion- and non-diffusion-based deep learning models for the MRI-to-PET image translation task for epilepsy imaging using simultaneous PET/MRI in 52 subjects (40 train/2 validate/10 hold-out test). We tested three different models: 2 score-based generative diffusion models (SGM-Karras Diffusion [SGM-KD] and SGM-variance preserving [SGM-VP]) and a Transformer-Unet. We report results on standard image processing metrics as well as clinically relevant metrics, including congruency measures (Congruence Index and Congruency Mean Absolute Error) that assess hemispheric metabolic asymmetry, which is a key part of the clinical analysis of these images. The SGM-KD produced the best qualitative and quantitative results when synthesizing PET purely from T1w and T2 FLAIR images with the least mean absolute error in whole-brain specific uptake value ratio (SUVR) and highest intraclass correlation coefficient. When 1% low-dose PET images are included in the inputs, all models improve significantly and are interchangeable for quantitative performance and visual quality. In summary, SGMs hold great potential for pure MRI-to-PET translation, while all 3 model types can synthesize full-dose FDG-PET accurately using MRI and ultralow-dose PET.
Page 10 of 36351 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.