Sort by:
Page 10 of 48475 results

Radiation Dose Reduction and Image Quality Improvement of UHR CT of the Neck by Novel Deep-learning Image Reconstruction.

Messerle DA, Grauhan NF, Leukert L, Dapper AK, Paul RH, Kronfeld A, Al-Nawas B, Krüger M, Brockmann MA, Othman AE, Altmann S

pubmed logopapersJun 30 2025
We evaluated a dedicated dose-reduced UHR-CT for head and neck imaging, combined with a novel deep learning reconstruction algorithm to assess its impact on image quality and radiation exposure. Retrospective analysis of ninety-eight consecutive patients examined using a new body weight-adapted protocol. Images were reconstructed using adaptive iterative dose reduction and advanced intelligent Clear-IQ engine with an already established (DL-1) and a newly implemented reconstruction algorithm (DL-2). Additional thirty patients were scanned without body-weight-adapted dose reduction (DL-1-SD). Three readers evaluated subjective image quality regarding image quality and assessment of several anatomic regions. For objective image quality, signal-to-noise ratio and contrast-to-noise ratio were calculated for temporalis and masseteric muscle and the floor of the mouth. Radiation dose was evaluated by comparing the computed tomography dose index (CTDIvol) values. Deep learning-based reconstruction algorithms significantly improved subjective image quality (diagnostic acceptability: DL‑1 vs AIDR OR of 25.16 [6.30;38.85], p < 0.001 and DL‑2 vs AIDR 720.15 [410.14;> 999.99], p < 0.001). Although higher doses (DL-1-SD) resulted in significantly enhanced image quality, DL‑2 demonstrated significant superiority over all other techniques across all defined parameters (p < 0.001). Similar results were demonstrated for objective image quality, e.g. image noise (DL‑1 vs AIDR OR of 19.0 [11.56;31.24], p < 0.001 and DL‑2 vs AIDR > 999.9 [825.81;> 999.99], p < 0.001). Using weight-adapted kV reduction, very low radiation doses could be achieved (CTDIvol: 7.4 ± 4.2 mGy). AI-based reconstruction algorithms in ultra-high resolution head and neck imaging provide excellent image quality while achieving very low radiation exposure.

Leveraging Representation Learning for Bi-parametric Prostate MRI to Disambiguate PI-RADS 3 and Improve Biopsy Decision Strategies.

Umapathy L, Johnson PM, Dutt T, Tong A, Chopra S, Sodickson DK, Chandarana H

pubmed logopapersJun 30 2025
Despite its high negative predictive value (NPV) for clinically significant prostate cancer (csPCa), MRI suffers from a substantial number of false positives, especially for intermediate-risk cases. In this work, we determine whether a deep learning model trained with PI-RADS-guided representation learning can disambiguate the PI-RADS 3 classification, detect csPCa from bi-parametric prostate MR images, and avoid unnecessary benign biopsies. This study included 28,263 MR examinations and radiology reports from 21,938 men imaged for known or suspected prostate cancer between 2015 and 2023 at our institution (21 imaging locations with 34 readers), with 6352 subsequent biopsies. We trained a deep learning model, a representation learner (RL), to learn how radiologists interpret conventionally acquired T2-weighted and diffusion-weighted MR images, using exams in which the radiologists are confident in their risk assessments (PI-RADS 1 and 2 for the absence of csPCa vs. PI-RADS 4 and 5 for the presence of csPCa, n=21,465). We then trained biopsy-decision models to detect csPCa (Gleason score ≥7) using these learned image representations, and compared them to the performance of radiologists, and of models trained on other clinical variables (age, prostate volume, PSA, and PSA density) for treatment-naïve test cohorts consisting of only PI-RADS 3 (n=253, csPCa=103) and all PI-RADS (n=531, csPCa=300) cases. On the 2 test cohorts (PI-RADS-3-only, all-PI-RADS), RL-based biopsy-decision models consistently yielded higher AUCs in detecting csPCa (AUC=0.73 [0.66, 0.79], 0.88 [0.85, 0.91]) compared with radiologists (equivocal, AUC=0.79 [0.75, 0.83]) and the clinical model (AUCs=0.69 [0.62, 0.75], 0.78 [0.74, 0.82]). In the PIRADS-3-only cohort, all of whom would be biopsied using our institution's standard of care, the RL decision model avoided 41% (62/150) of benign biopsies compared with the clinical model (26%, P<0.001), and improved biopsy yield by 10% compared with the PI-RADS ≥3 decision strategy (0.50 vs. 0.40). Furthermore, on the all-PI-RADS cohort, RL decision model avoided 27% of additional benign biopsies (138/231) compared to radiologists (33%, P<0.001) with comparable sensitivity (93% vs. 92%), higher NPV (0.87 vs. 0.77), and biopsy yield (0.75 vs. 0.64). The combination of clinical and RL decision models further avoided benign biopsies (46% in PI-RADS-3-only and 62% in all-PI-RADS) while improving NPV (0.82, 0.88) and biopsy yields (0.52, 0.76) across the 2 test cohorts. Our PI-RADS-guided deep learning RL model learns summary representations from bi-parametric prostate MR images that can provide additional information to disambiguate intermediate-risk PI-RADS 3 assessments. The resulting RL-based biopsy decision models also outperformed radiologists in avoiding benign biopsies while maintaining comparable sensitivity to csPCa for the all-PI-RADS cohort. Such AI models can easily be integrated into clinical practice to supplement radiologists' reads in general and improve biopsy yield for any equivocal decisions.

Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles.

Shen X, Huang H, Nichyporuk B, Arbel T

pubmed logopapersJun 30 2025
Once deployed, medical image analysis methods are often faced with unexpected image corruptions and noise perturbations. These unknown covariate shifts present significant challenges to deep learning based methods trained on "clean" images. This often results in unreliable predictions and poorly calibrated confidence, hence hindering clinical applicability. While recent methods have been developed to address specific issues such as confidence calibration or adversarial robustness, no single framework effectively tackles all these challenges simultaneously. To bridge this gap, we propose LaDiNE, a novel ensemble learning method combining the robustness of Vision Transformers with diffusion-based generative models for improved reliability in medical image classification. Specifically, transformer encoder blocks are used as hierarchical feature extractors that learn invariant features from images for each ensemble member, resulting in features that are robust to input perturbations. In addition, diffusion models are used as flexible density estimators to estimate member densities conditioned on the invariant features, leading to improved modeling of complex data distributions while retaining properly calibrated confidence. Extensive experiments on tuberculosis chest X-rays and melanoma skin cancer datasets demonstrate that LaDiNE achieves superior performance compared to a wide range of state-of-the-art methods by simultaneously improving prediction accuracy and confidence calibration under unseen noise, adversarial perturbations, and resolution degradation.

BIScreener: enhancing breast cancer ultrasound diagnosis through integrated deep learning with interpretability.

Chen Y, Wang P, Ouyang J, Tan M, Nie L, Zhang Y, Wang T

pubmed logopapersJun 30 2025
Breast cancer is the leading cause of death among women worldwide, and early detection through the standardized BI-RADS framework helps physicians assess the risk of malignancy and guide appropriate diagnostic and treatment decisions. In this study, an interpretable deep learning model (BIScreener) was proposed for predicting BI-RADS classifications from breast ultrasound images, aiding in the accurate assessment of breast cancer risk and improving diagnostic efficiency. BIScreener utilizes the stacked generalization of three pretrained convolutional neural networks to analyze ultrasound images obtained from two specific instruments (Mindray R5 and HITACHI) used at local hospitals. BIScreener achieved a classification total accuracy of 90.0% and ROC-AUC value of 0.982 in the external test set for five BI-RADS categories. The proposed method achieved 83.8% classification total accuracy and 0.967 ROC-AUC value for seven BI-RADS categories. In addition, the model improved the diagnostic accuracy of two radiologists by more than 8.1% for five BI-RADS categories and by more than 4.8% for seven BI-RADS categories and reduced the explanation time by more than 19.0%, demonstrating its potential to accelerate and improve the breast cancer diagnosis process.

Ultrasound Radio Frequency Time Series for Tissue Typing: Experiments on In-Vivo Breast Samples Using Texture-Optimized Features and Multi-Origin Method of Classification (MOMC).

Arab M, Fallah A, Rashidi S, Dastjerdi MM, Ahmadinejad N

pubmed logopapersJun 30 2025
One of the most promising auxiliaries for screening breast cancer (BC) is ultrasound (US) radio-frequency (RF) time series. It has the superiority of not requiring any supplementary equipment over other methods. This article sought to propound a machine learning (ML) method for the automated categorization of breast lesions-categorized as benign, probably benign, suspicious, or malignant-using features extracted from the accumulated US RF time series. In this research, 220 data points of the categories as mentioned earlier, recorded from 118 patients, were analyzed. The RFTSBU dataset was registered by a SuperSonic Imagine Aixplorer® medical/research system fitted with a linear transducer. The expert radiologist manually selected regions of interest (ROIs) in B-mode images before extracting 283 features from each ROI in the ML approach, utilizing textural features such as Gabor filter (GF), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), gray-level size zone matrix (GLSZM), and gray-level dependence matrix (GLDM). Subsequently, the particle swarm optimization (PSO) narrowed the features to 131 highly effective ones. Ultimately, the features underwent classification using an innovative multi-origin method classification (MOMC), marking a significant leap in BC diagnosis. Employing 5-fold cross-validation, the study achieved notable accuracy rates of 98.57 ± 1.09%, 91.53 ± 0.89%, and 83.71 ± 1.30% for 2-, 3-, and 4-class classifications, respectively, using MOMC-SVM and MOMC-ensemble classifiers. This research introduces an innovative ML-based approach to differentiate between diverse breast lesion types using in vivo US RF time series data. The findings underscore its efficacy in enhancing classification accuracy, promising significant strides in computer-aided diagnosis (CAD) for BC screening.

A Deep Learning-Based De-Artifact Diffusion Model for Removing Motion Artifacts in Knee MRI.

Li Y, Gong T, Zhou Q, Wang H, Yan X, Xi Y, Shi Z, Deng W, Shi F, Wang Y

pubmed logopapersJun 30 2025
Motion artifacts are common for knee MRI, which usually lead to rescanning. Effective removal of motion artifacts would be clinically useful. To construct an effective deep learning-based model to remove motion artifacts for knee MRI using real-world data. Retrospective. Model construction: 90 consecutive patients (1997 2D slices) who had knee MRI images with motion artifacts paired with immediately rescanned images without artifacts served as ground truth. Internal test dataset: 25 patients (795 slices) from another period; external test dataset: 39 patients (813 slices) from another hospital. 3-T/1.5-T knee MRI with T1-weighted imaging, T2-weighted imaging, and proton-weighted imaging. A deep learning-based supervised conditional diffusion model was constructed. Objective metrics (root mean square error [RMSE], peak signal-to-noise ratio [PSNR], structural similarity [SSIM]) and subjective ratings were used for image quality assessment, which were compared with three other algorithms (enhanced super-resolution [ESR], enhanced deep super-resolution, and ESR using a generative adversarial network). Diagnostic performance of the output images was compared with the rescanned images. The Kappa Test, Pearson chi-square test, Fredman's rank-sum test, and the marginal homogeneity test. A p value < 0.05 was considered statistically significant. Subjective ratings showed significant improvements in the output images compared to the input, with no significant difference from the ground truth. The constructed method demonstrated the smallest RMSE (11.44  <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \pm $$</annotation></semantics> </math>  5.47 in the validation cohort; 13.95  <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \pm $$</annotation></semantics> </math>  4.32 in the external test cohort), the largest PSNR (27.61  <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \pm $$</annotation></semantics> </math>  3.20 in the validation cohort; 25.64  <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \pm $$</annotation></semantics> </math>  2.67 in the external test cohort) and SSIM (0.97  <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \pm $$</annotation></semantics> </math>  0.04 in the validation cohort; 0.94  <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics><mrow><mo>±</mo></mrow> <annotation>$$ \pm $$</annotation></semantics> </math>  0.04 in the external test cohort) compared to the other three algorithms. The output images achieved comparable diagnostic capability as the ground truth for multiple anatomical structures. The constructed model exhibited feasibility and effectiveness, and outperformed multiple other algorithms for removing motion artifacts in knee MRI. Level 3. Stage 2.

MedRegion-CT: Region-Focused Multimodal LLM for Comprehensive 3D CT Report Generation

Sunggu Kyung, Jinyoung Seo, Hyunseok Lim, Dongyeong Kim, Hyungbin Park, Jimin Sung, Jihyun Kim, Wooyoung Jo, Yoojin Nam, Namkug Kim

arxiv logopreprintJun 29 2025
The recent release of RadGenome-Chest CT has significantly advanced CT-based report generation. However, existing methods primarily focus on global features, making it challenging to capture region-specific details, which may cause certain abnormalities to go unnoticed. To address this, we propose MedRegion-CT, a region-focused Multi-Modal Large Language Model (MLLM) framework, featuring three key innovations. First, we introduce Region Representative ($R^2$) Token Pooling, which utilizes a 2D-wise pretrained vision model to efficiently extract 3D CT features. This approach generates global tokens representing overall slice features and region tokens highlighting target areas, enabling the MLLM to process comprehensive information effectively. Second, a universal segmentation model generates pseudo-masks, which are then processed by a mask encoder to extract region-centric features. This allows the MLLM to focus on clinically relevant regions, using six predefined region masks. Third, we leverage segmentation results to extract patient-specific attributions, including organ size, diameter, and locations. These are converted into text prompts, enriching the MLLM's understanding of patient-specific contexts. To ensure rigorous evaluation, we conducted benchmark experiments on report generation using the RadGenome-Chest CT. MedRegion-CT achieved state-of-the-art performance, outperforming existing methods in natural language generation quality and clinical relevance while maintaining interpretability. The code for our framework is publicly available.

Cognition-Eye-Brain Connection in Alzheimer's Disease Spectrum Revealed by Multimodal Imaging.

Shi Y, Shen T, Yan S, Liang J, Wei T, Huang Y, Gao R, Zheng N, Ci R, Zhang M, Tang X, Qin Y, Zhu W

pubmed logopapersJun 29 2025
The connection between cognition, eye, and brain remains inconclusive in Alzheimer's disease (AD) spectrum disorders. To explore the relationship between cognitive function, retinal biometrics, and brain alterations in the AD spectrum. Prospective. Healthy control (HC) (n = 16), subjective cognitive decline (SCD) (n = 35), mild cognitive impairment (MCI) (n = 18), and AD group (n = 7). 3-T, 3D T1-weighted Brain Volume (BRAVO) and resting-state functional MRI (fMRI). In all subgroups, cortical thickness was measured from BRAVO and segmented using the Desikan-Killiany-Tourville (DKT) atlas. The fractional amplitude of low-frequency fluctuations (FALFF) and regional homogeneity (ReHo) were measured in fMRI using voxel-based analysis. The eye was imaged by optical coherence tomography angiography (OCTA), with the deep learning model FARGO segmenting the foveal avascular zone (FAZ) and retinal vessels. FAZ area and perimeter, retinal blood vessels curvature (RBVC), thicknesses of the retinal nerve fiber layer (RNFL) and ganglion cell layer-inner plexiform layer (GCL-IPL) were calculated. Cognition-eye-brain associations were compared across the HC group and each AD spectrum stage using multivariable linear regression. Multivariable linear regression analysis. Statistical significance was set at p < 0.05 with FWE correction for fMRI and p < 1/62 (Bonferroni-corrected) for structural analyses. Reductions of FALFF in temporal regions, especially the left superior temporal gyrus (STG) in MCI patients, were linked to decreased RNFL thickness and increased FAZ area significantly. In AD patients, reduced ReHo values in occipital regions, especially the right middle occipital gyrus (MOG), were significantly associated with an enlarged FAZ area. The SCD group showed widespread cortical thickening significantly associated with all aforementioned retinal biometrics, with notable thickening in the right fusiform gyrus (FG) and right parahippocampal gyrus (PHG) correlating with reduced GCL-IPL thickness. Brain function and structure may be associated with cognition and retinal biometrics across the AD spectrum. Specifically, cognition-eye-brain connections may be present in SCD. 2. 3.

CA-Diff: Collaborative Anatomy Diffusion for Brain Tissue Segmentation

Qilong Xing, Zikai Song, Yuteng Ye, Yuke Chen, Youjia Zhang, Na Feng, Junqing Yu, Wei Yang

arxiv logopreprintJun 28 2025
Segmentation of brain structures from MRI is crucial for evaluating brain morphology, yet existing CNN and transformer-based methods struggle to delineate complex structures accurately. While current diffusion models have shown promise in image segmentation, they are inadequate when applied directly to brain MRI due to neglecting anatomical information. To address this, we propose Collaborative Anatomy Diffusion (CA-Diff), a framework integrating spatial anatomical features to enhance segmentation accuracy of the diffusion model. Specifically, we introduce distance field as an auxiliary anatomical condition to provide global spatial context, alongside a collaborative diffusion process to model its joint distribution with anatomical structures, enabling effective utilization of anatomical features for segmentation. Furthermore, we introduce a consistency loss to refine relationships between the distance field and anatomical structures and design a time adapted channel attention module to enhance the U-Net feature fusion procedure. Extensive experiments show that CA-Diff outperforms state-of-the-art (SOTA) methods.

Inpainting is All You Need: A Diffusion-based Augmentation Method for Semi-supervised Medical Image Segmentation

Xinrong Hu, Yiyu Shi

arxiv logopreprintJun 28 2025
Collecting pixel-level labels for medical datasets can be a laborious and expensive process, and enhancing segmentation performance with a scarcity of labeled data is a crucial challenge. This work introduces AugPaint, a data augmentation framework that utilizes inpainting to generate image-label pairs from limited labeled data. AugPaint leverages latent diffusion models, known for their ability to generate high-quality in-domain images with low overhead, and adapts the sampling process for the inpainting task without need for retraining. Specifically, given a pair of image and label mask, we crop the area labeled with the foreground and condition on it during reversed denoising process for every noise level. Masked background area would gradually be filled in, and all generated images are paired with the label mask. This approach ensures the accuracy of match between synthetic images and label masks, setting it apart from existing dataset generation methods. The generated images serve as valuable supervision for training downstream segmentation models, effectively addressing the challenge of limited annotations. We conducted extensive evaluations of our data augmentation method on four public medical image segmentation datasets, including CT, MRI, and skin imaging. Results across all datasets demonstrate that AugPaint outperforms state-of-the-art label-efficient methodologies, significantly improving segmentation performance.
Page 10 of 48475 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.