Sort by:
Page 10 of 1401395 results

Evaluating the Impact of Radiographic Noise on Chest X-ray Semantic Segmentation and Disease Classification Using a Scalable Noise Injection Framework

Derek Jiu, Kiran Nijjer, Nishant Chinta, Ryan Bui, Ben Liu, Kevin Zhu

arxiv logopreprintSep 28 2025
Deep learning models are increasingly used for radiographic analysis, but their reliability is challenged by the stochastic noise inherent in clinical imaging. A systematic, cross-task understanding of how different noise types impact these models is lacking. Here, we evaluate the robustness of state-of-the-art convolutional neural networks (CNNs) to simulated quantum (Poisson) and electronic (Gaussian) noise in two key chest X-ray tasks: semantic segmentation and pulmonary disease classification. Using a novel, scalable noise injection framework, we applied controlled, clinically-motivated noise severities to common architectures (UNet, DeepLabV3, FPN; ResNet, DenseNet, EfficientNet) on public datasets (Landmark, ChestX-ray14). Our results reveal a stark dichotomy in task robustness. Semantic segmentation models proved highly vulnerable, with lung segmentation performance collapsing under severe electronic noise (Dice Similarity Coefficient drop of 0.843), signifying a near-total model failure. In contrast, classification tasks demonstrated greater overall resilience, but this robustness was not uniform. We discovered a differential vulnerability: certain tasks, such as distinguishing Pneumothorax from Atelectasis, failed catastrophically under quantum noise (AUROC drop of 0.355), while others were more susceptible to electronic noise. These findings demonstrate that while classification models possess a degree of inherent robustness, pixel-level segmentation tasks are far more brittle. The task- and noise-specific nature of model failure underscores the critical need for targeted validation and mitigation strategies before the safe clinical deployment of diagnostic AI.

MAN: Latent Diffusion Enhanced Multistage Anti-Noise Network for Efficient and High-Quality Low-Dose CT Image Denoising

Tangtangfang Fang, Jingxi Hu, Xiangjian He, Jiaqi Yang

arxiv logopreprintSep 28 2025
While diffusion models have set a new benchmark for quality in Low-Dose Computed Tomography (LDCT) denoising, their clinical adoption is critically hindered by extreme computational costs, with inference times often exceeding thousands of seconds per scan. To overcome this barrier, we introduce MAN, a Latent Diffusion Enhanced Multistage Anti-Noise Network for Efficient and High-Quality Low-Dose CT Image Denoising task. Our method operates in a compressed latent space via a perceptually-optimized autoencoder, enabling an attention-based conditional U-Net to perform the fast, deterministic conditional denoising diffusion process with drastically reduced overhead. On the LDCT and Projection dataset, our model achieves superior perceptual quality, surpassing CNN/GAN-based methods while rivaling the reconstruction fidelity of computationally heavy diffusion models like DDPM and Dn-Dp. Most critically, in the inference stage, our model is over 60x faster than representative pixel space diffusion denoisers, while remaining competitive on PSNR/SSIM scores. By bridging the gap between high fidelity and clinical viability, our work demonstrates a practical path forward for advanced generative models in medical imaging.

Modified UNet-enhanced ultrasonic superb microvascular imaging feature extraction and grading of carpal tunnel syndrome.

Gong X, Zhang G, Zhao D, Jin Z, Zhu Y, Jiang L, Ding B, Xue H, Lin H, Zhang W, Zhang D, Tu J

pubmed logopapersSep 28 2025
Carpal tunnel syndrome (CTS) is recognized as the most frequently encountered median nerve (MN) entrapment neuropathy, with a disproportionate burden in middle-aged and elderly individuals and in occupational groups with repetitive wrist use. Anatomically, CTS is characterized by compression of the median nerve within the confined space between the transverse carpal ligament and flexor tendons, and microcirculatory impairment is regarded as one of its key pathological bases. Although electrodiagnostic assessments are considered as diagnostic gold standard, their utility is limited by suboptimal patient compliance, procedural discomfort, and inadequate sensitivity for detecting mild disease. This study integrates ultrafast Superb Microvascular Imaging (SMI) with a classification-guided, improved UNet segmentation modal and quantitative image analysis to objectively extract microvascular features for CTS grading. In a cohort of 105 patients (21 mild, 71 moderate, 13 severe CTS) and 21 healthy controls, longitudinal and transverse SMI cine loops were segmented using an improved UNet with cross-plane classification guidance. The modified network can yielded superior segmentation effect over a traditional UNet. From segmented regions we extracted 6 SMI-derived geometric features, which were then used as predictors in a nonlinear quadratic regression model for CTS severity grading. The model achieved 93.7 % overall classification accuracy and an AUC of 0.95 in cross validation. Independent blind validation (n = 12) showed strong agreement with expert sonographers (Kappa = 0.87). These results demonstrate that high spatiotemporal SMI combined with anatomy-aware deep learning model could enable reproducible extraction of microvascular geometry, and supports robust, noninvasive grading of CTS, with potential for deployment on portable ultrasound platforms for point-of-care screening and bedside ultrasonic monitoring.

Tunable-Generalization Diffusion Powered by Self-Supervised Contextual Sub-Data for Low-Dose CT Reconstruction

Guoquan Wei, Zekun Zhou, Liu Shi, Wenzhe Shan, Qiegen Liu

arxiv logopreprintSep 28 2025
Current models based on deep learning for low-dose CT denoising rely heavily on paired data and generalize poorly. Even the more concerned diffusion models need to learn the distribution of clean data for reconstruction, which is difficult to satisfy in medical clinical applications. At the same time, self-supervised-based methods face the challenge of significant degradation of generalizability of models pre-trained for the current dose to expand to other doses. To address these issues, this paper proposes a novel method of tunable-generalization diffusion powered by self-supervised contextual sub-data for low-dose CT reconstruction, named SuperDiff. Firstly, a contextual subdata similarity adaptive sensing strategy is designed for denoising centered on the LDCT projection domain, which provides an initial prior for the subsequent progress. Subsequently, the initial prior is used to combine knowledge distillation with a deep combination of latent diffusion models for optimizing image details. The pre-trained model is used for inference reconstruction, and the pixel-level self-correcting fusion technique is proposed for fine-grained reconstruction of the image domain to enhance the image fidelity, using the initial prior and the LDCT image as a guide. In addition, the technique is flexibly applied to the generalization of upper and lower doses or even unseen doses. Dual-domain strategy cascade for self-supervised LDCT denoising, SuperDiff requires only LDCT projection domain data for training and testing. Full qualitative and quantitative evaluations on both datasets and real data show that SuperDiff consistently outperforms existing state-of-the-art methods in terms of reconstruction and generalization performance.

Artificial intelligence in carotid computed tomography angiography plaque detection: Decade of progress and future perspectives.

Wang DY, Yang T, Zhang CT, Zhan PC, Miao ZX, Li BL, Yang H

pubmed logopapersSep 28 2025
The application of artificial intelligence (AI) in carotid atherosclerotic plaque detection <i>via</i> computed tomography angiography (CTA) has significantly advanced over the past decade. This mini-review consolidates recent innovations in deep learning architectures, domain adaptation techniques, and automated plaque characterization methodologies. Hybrid models, such as residual U-Net-Pyramid Scene Parsing Network, exhibit a remarkable precision of 80.49% in plaque segmentation, outperforming radiologists in diagnostic efficiency by reducing analysis time from minutes to mere seconds. Domain-adaptive frameworks, such as Lesion Assessment through Tracklet Evaluation, demonstrate robust performance across heterogeneous imaging datasets, achieving an area under the curve (AUC) greater than 0.88. Furthermore, novel approaches integrating U-Net and Efficient-Net architectures, enhanced by Bayesian optimization, have achieved impressive correlation coefficients (0.89) for plaque quantification. AI-powered CTA also enables high-precision three-dimensional vascular segmentation, with a Dice coefficient of 0.9119, and offers superior cardiovascular risk stratification compared to traditional Agatston scoring, yielding AUC values of 0.816 <i>vs</i> 0.729 at a 15-year follow-up. These breakthroughs address key challenges in plaque motion analysis, with systolic retractive motion biomarkers successfully identifying 80% of vulnerable plaques. Looking ahead, future directions focus on enhancing the interpretability of AI models through explainable AI and leveraging federated learning to mitigate data heterogeneity. This mini-review underscores the transformative potential of AI in carotid plaque assessment, offering substantial implications for stroke prevention and personalized cerebrovascular management strategies.

A Novel Hybrid Deep Learning and Chaotic Dynamics Approach for Thyroid Cancer Classification

Nada Bouchekout, Abdelkrim Boukabou, Morad Grimes, Yassine Habchi, Yassine Himeur, Hamzah Ali Alkhazaleh, Shadi Atalla, Wathiq Mansoor

arxiv logopreprintSep 28 2025
Timely and accurate diagnosis is crucial in addressing the global rise in thyroid cancer, ensuring effective treatment strategies and improved patient outcomes. We present an intelligent classification method that couples an Adaptive Convolutional Neural Network (CNN) with Cohen-Daubechies-Feauveau (CDF9/7) wavelets whose detail coefficients are modulated by an n-scroll chaotic system to enrich discriminative features. We evaluate on the public DDTI thyroid ultrasound dataset (n = 1,638 images; 819 malignant / 819 benign) using 5-fold cross-validation, where the proposed method attains 98.17% accuracy, 98.76% sensitivity, 97.58% specificity, 97.55% F1-score, and an AUC of 0.9912. A controlled ablation shows that adding chaotic modulation to CDF9/7 improves accuracy by +8.79 percentage points over a CDF9/7-only CNN (from 89.38% to 98.17%). To objectively position our approach, we trained state-of-the-art backbones on the same data and splits: EfficientNetV2-S (96.58% accuracy; AUC 0.987), Swin-T (96.41%; 0.986), ViT-B/16 (95.72%; 0.983), and ConvNeXt-T (96.94%; 0.987). Our method outperforms the best of these by +1.23 points in accuracy and +0.0042 in AUC, while remaining computationally efficient (28.7 ms per image; 1,125 MB peak VRAM). Robustness is further supported by cross-dataset testing on TCIA (accuracy 95.82%) and transfer to an ISIC skin-lesion subset (n = 28 unique images, augmented to 2,048; accuracy 97.31%). Explainability analyses (Grad-CAM, SHAP, LIME) highlight clinically relevant regions. Altogether, the wavelet-chaos-CNN pipeline delivers state-of-the-art thyroid ultrasound classification with strong generalization and practical runtime characteristics suitable for clinical integration.

FedAgentBench: Towards Automating Real-world Federated Medical Image Analysis with Server-Client LLM Agents

Pramit Saha, Joshua Strong, Divyanshu Mishra, Cheng Ouyang, J. Alison Noble

arxiv logopreprintSep 28 2025
Federated learning (FL) allows collaborative model training across healthcare sites without sharing sensitive patient data. However, real-world FL deployment is often hindered by complex operational challenges that demand substantial human efforts. This includes: (a) selecting appropriate clients (hospitals), (b) coordinating between the central server and clients, (c) client-level data pre-processing, (d) harmonizing non-standardized data and labels across clients, and (e) selecting FL algorithms based on user instructions and cross-client data characteristics. However, the existing FL works overlook these practical orchestration challenges. These operational bottlenecks motivate the need for autonomous, agent-driven FL systems, where intelligent agents at each hospital client and the central server agent collaboratively manage FL setup and model training with minimal human intervention. To this end, we first introduce an agent-driven FL framework that captures key phases of real-world FL workflows from client selection to training completion and a benchmark dubbed FedAgentBench that evaluates the ability of LLM agents to autonomously coordinate healthcare FL. Our framework incorporates 40 FL algorithms, each tailored to address diverse task-specific requirements and cross-client characteristics. Furthermore, we introduce a diverse set of complex tasks across 201 carefully curated datasets, simulating 6 modality-specific real-world healthcare environments, viz., Dermatoscopy, Ultrasound, Fundus, Histopathology, MRI, and X-Ray. We assess the agentic performance of 14 open-source and 10 proprietary LLMs spanning small, medium, and large model scales. While some agent cores such as GPT-4.1 and DeepSeek V3 can automate various stages of the FL pipeline, our results reveal that more complex, interdependent tasks based on implicit goals remain challenging for even the strongest models.

Imaging-Based Mortality Prediction in Patients with Systemic Sclerosis

Alec K. Peltekian, Karolina Senkow, Gorkem Durak, Kevin M. Grudzinski, Bradford C. Bemiss, Jane E. Dematte, Carrie Richardson, Nikolay S. Markov, Mary Carns, Kathleen Aren, Alexandra Soriano, Matthew Dapas, Harris Perlman, Aaron Gundersheimer, Kavitha C. Selvan, John Varga, Monique Hinchcliff, Krishnan Warrior, Catherine A. Gao, Richard G. Wunderink, GR Scott Budinger, Alok N. Choudhary, Anthony J. Esposito, Alexander V. Misharin, Ankit Agrawal, Ulas Bagci

arxiv logopreprintSep 27 2025
Interstitial lung disease (ILD) is a leading cause of morbidity and mortality in systemic sclerosis (SSc). Chest computed tomography (CT) is the primary imaging modality for diagnosing and monitoring lung complications in SSc patients. However, its role in disease progression and mortality prediction has not yet been fully clarified. This study introduces a novel, large-scale longitudinal chest CT analysis framework that utilizes radiomics and deep learning to predict mortality associated with lung complications of SSc. We collected and analyzed 2,125 CT scans from SSc patients enrolled in the Northwestern Scleroderma Registry, conducting mortality analyses at one, three, and five years using advanced imaging analysis techniques. Death labels were assigned based on recorded deaths over the one-, three-, and five-year intervals, confirmed by expert physicians. In our dataset, 181, 326, and 428 of the 2,125 CT scans were from patients who died within one, three, and five years, respectively. Using ResNet-18, DenseNet-121, and Swin Transformer we use pre-trained models, and fine-tuned on 2,125 images of SSc patients. Models achieved an AUC of 0.769, 0.801, 0.709 for predicting mortality within one-, three-, and five-years, respectively. Our findings highlight the potential of both radiomics and deep learning computational methods to improve early detection and risk assessment of SSc-related interstitial lung disease, marking a significant advancement in the literature.

S$^3$F-Net: A Multi-Modal Approach to Medical Image Classification via Spatial-Spectral Summarizer Fusion Network

Md. Saiful Bari Siddiqui, Mohammed Imamul Hassan Bhuiyan

arxiv logopreprintSep 27 2025
Convolutional Neural Networks have become a cornerstone of medical image analysis due to their proficiency in learning hierarchical spatial features. However, this focus on a single domain is inefficient at capturing global, holistic patterns and fails to explicitly model an image's frequency-domain characteristics. To address these challenges, we propose the Spatial-Spectral Summarizer Fusion Network (S$^3$F-Net), a dual-branch framework that learns from both spatial and spectral representations simultaneously. The S$^3$F-Net performs a fusion of a deep spatial CNN with our proposed shallow spectral encoder, SpectraNet. SpectraNet features the proposed SpectralFilter layer, which leverages the Convolution Theorem by applying a bank of learnable filters directly to an image's full Fourier spectrum via a computation-efficient element-wise multiplication. This allows the SpectralFilter layer to attain a global receptive field instantaneously, with its output being distilled by a lightweight summarizer network. We evaluate S$^3$F-Net across four medical imaging datasets spanning different modalities to validate its efficacy and generalizability. Our framework consistently and significantly outperforms its strong spatial-only baseline in all cases, with accuracy improvements of up to 5.13%. With a powerful Bilinear Fusion, S$^3$F-Net achieves a SOTA competitive accuracy of 98.76% on the BRISC2025 dataset. Concatenation Fusion performs better on the texture-dominant Chest X-Ray Pneumonia dataset, achieving 93.11% accuracy, surpassing many top-performing, much deeper models. Our explainability analysis also reveals that the S$^3$F-Net learns to dynamically adjust its reliance on each branch based on the input pathology. These results verify that our dual-domain approach is a powerful and generalizable paradigm for medical image analysis.

Enhanced Fracture Diagnosis Based on Critical Regional and Scale Aware in YOLO

Yuyang Sun, Junchuan Yu, Cuiming Zou

arxiv logopreprintSep 27 2025
Fracture detection plays a critical role in medical imaging analysis, traditional fracture diagnosis relies on visual assessment by experienced physicians, however the speed and accuracy of this approach are constrained by the expertise. With the rapid advancements in artificial intelligence, deep learning models based on the YOLO framework have been widely employed for fracture detection, demonstrating significant potential in improving diagnostic efficiency and accuracy. This study proposes an improved YOLO-based model, termed Fracture-YOLO, which integrates novel Critical-Region-Selector Attention (CRSelector) and Scale-Aware (ScA) heads to further enhance detection performance. Specifically, the CRSelector module utilizes global texture information to focus on critical features of fracture regions. Meanwhile, the ScA module dynamically adjusts the weights of features at different scales, enhancing the model's capacity to identify fracture targets at multiple scales. Experimental results demonstrate that, compared to the baseline model, Fracture-YOLO achieves a significant improvement in detection precision, with mAP50 and mAP50-95 increasing by 4 and 3, surpassing the baseline model and achieving state-of-the-art (SOTA) performance.
Page 10 of 1401395 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.