AI demonstrates comparable diagnostic performance to radiologists in MRI detection of anterior cruciate ligament tears: a systematic review and meta-analysis.
Authors
Affiliations (3)
Affiliations (3)
- Imperial College London, London, United Kingdom. [email protected].
- Imperial College Healthcare NHS Trust, London, United Kingdom.
- Imperial College London, London, United Kingdom.
Abstract
Anterior cruciate ligament (ACL) injuries are among the most common knee injuries, affecting 1 in 3500 people annually. With rising rates of ACL tears, particularly in children, timely diagnosis is critical. This study evaluates artificial intelligence (AI) effectiveness in diagnosing and classifying ACL tears on MRI through a systematic review and meta-analysis, comparing AI performance with clinicians and assessing radiomic and non-radiomic models. Major databases were searched for AI models diagnosing ACL tears via MRIs. 36 studies, representing 52 models, were included. Accuracy, sensitivity, and specificity metrics were extracted. Pooled estimates were calculated using a random-effects model. Subgroup analyses compared MRI sequences, ground truths, AI versus clinician performance, and radiomic versus non-radiomic models. This study was conducted in line with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocols. AI demonstrated strong diagnostic performance, with pooled accuracy, sensitivity, and specificity of 87.37%, 90.73%, and 91.34%, respectively. Classification models achieved pooled metrics of 90.46%, 88.68%, and 94.08%. Radiomic models outperformed non-radiomic models, and AI demonstrated comparable performance to clinicians in key metrics. Three-dimensional (3D) proton density fat suppression (PDFS) sequences with < 2 mm slice depth yielded the most promising results, despite small sample sizes, favouring arthroscopic benchmarks. Despite high heterogeneity (I² > 90%). AI models demonstrate diagnostic performance comparable to clinicians and may serve as valuable adjuncts in ACL tear detection, pending prospective validation. However, substantial heterogeneity and limited interpretability remain key challenges. Further research and standardised evaluation frameworks are needed to support clinical integration. Question Is AI effective and accurate in diagnosing and classifying anterior cruciate ligament (ACL) tears on MRI? Findings AI demonstrated high accuracy (87.37%), sensitivity (90.73%), and specificity (91.34%) in ACL tear diagnosis, matching or surpassing clinicians. Radiomic models outperformed non-radiomic approaches. Clinical relevance AI can enhance the accuracy of ACL tear diagnosis, reducing misdiagnoses and supporting clinicians, especially in resource-limited settings. Its integration into clinical workflows may streamline MRI interpretation, reduce diagnostic delays, and improve patient outcomes by optimising management.