Sort by:
Page 1 of 217 results
Next

Automated Assessment of Choroidal Mass Dimensions Using Static and Dynamic Ultrasonographic Imaging

Emmert, N., Wall, G., Nabavi, A., Rahdar, A., Wilson, M., King, B., Cernichiaro-Espinosa, L., Yousefi, S.

medrxiv logopreprintAug 1 2025
PurposeTo develop and validate an artificial intelligence (AI)-based model that automatically measures choroidal mass dimensions on B{square}scan ophthalmic ultrasound still images and cine loops. DesignRetrospective diagnostic accuracy study with internal and external validation. ParticipantsThe dataset included 1,822 still images and 283 cine loops of choroidal masses for model development and testing. An additional 182 still images were used for external validation, and 302 control images with other diagnoses were included to assess specificity MethodsA deep convolutional neural network (CNN) based on the U-Net architecture was developed to automatically measure the apical height and basal diameter of choroidal masses on B-scan ultrasound. All still images were manually annotated by expert graders and reviewed by a senior ocular oncologist. Cine loops were analyzed frame by frame and the frame with the largest detected mass dimensions was selected for evaluation. Outcome MeasuresThe primary outcome was the models measurement accuracy, defined by the mean absolute error (MAE) in millimeters, compared to expert manual annotations, for both apical height and basal diameter. Secondary metrics included the Dice coefficient, coefficient of determination (R2), and mean pixel distance between predicted and reference measurements. ResultsOn the internal test set of still images, the model successfully detected the tumor in 99.7% of cases. The mean absolute error (MAE) was 0.38 {+/-} 0.55 mm for apical height (95.1% of measurements <1 mm of the expert annotation) and was 0.99 {+/-} 1.15 mm for basal diameter (64.4% of measurements <1 mm). Linear agreement between predicted and reference measurements was strong, with R2 values of 0.74 for apical height and 0.89 for basal diameter. When applied to the control set of 302 control images, the model demonstrated a moderate false positive rate. On the external validation set, the model maintained comparable accuracy. Among the cine loops, the model detected tumors in 89.4% of cases with comparable accuracy. ConclusionDeep learning can deliver fast, reproducible, millimeter{square}level measurements of choroidal mass dimensions with robust performance across different mass types and imaging sources. These findings support the potential clinical utility of AI-assisted measurement tools in ocular oncology workflows.

Deep Learning-Based Multi-View Echocardiographic Framework for Comprehensive Diagnosis of Pericardial Disease

Jeong, S., Moon, I., Jeon, J., Jeong, D., Lee, J., kim, J., Lee, S.-A., Jang, Y., Yoon, Y. E., Chang, H.-J.

medrxiv logopreprintJul 25 2025
BackgroundPericardial disease exhibits a wide clinical spectrum, ranging from mild effusions to life-threatening tamponade or constriction pericarditis. While transthoracic echocardiography (TTE) is the primary diagnostic modality, its effectiveness is limited by operator dependence and incomplete evaluation of functional impact. Existing artificial intelligence models focus primarily on effusion detection, lacking comprehensive disease assessment. MethodsWe developed a deep learning (DL)-based framework that sequentially assesses pericardial disease: (1) morphological changes, including pericardial effusion amount (normal/small/moderate/large) and pericardial thickening or adhesion (yes/no), using five B-mode views, and (2) hemodynamic significance (yes/no), incorporating additional inputs from Doppler and inferior vena cava measurements. The developmental dataset comprises 2,253 TTEs from multiple Korean institutions (225 for internal testing), and the independent external test set consists of 274 TTEs. ResultsIn the internal test set, the model achieved diagnostic accuracy of 81.8-97.3% for pericardial effusion classification, 91.6% for pericardial thickening/adhesion, and 86.2% for hemodynamic significance. Corresponding accuracy in the external test set was 80.3-94.2%, 94.5%, and 85.5%, respectively. Area under the receiver operating curves (AUROCs) for the three tasks in the internal test set was 0.92-0.99, 0.90, and 0.79; and in the external test set, 0.95-0.98, 0.85, and 0.76. Sensitivity for detecting pericardial thickening/adhesion and hemodynamic significance was modest (66.7% and 68.8% in the internal test set), but improved substantially when cases with poor image quality were excluded (77.3%, and 80.8%). Similar performance gains were observed in subgroups with complete target views and a higher number of available video clips. ConclusionsThis study presents the first DL-based TTE model capable of comprehensive evaluation of pericardial disease, integrating both morphological and functional assessments. The proposed framework demonstrated strong generalizability and aligned with the real-world diagnostic workflow. However, caution is warranted when interpreting results under suboptimal imaging conditions.

CLIF-Net: Intersection-guided Cross-view Fusion Network for Infection Detection from Cranial Ultrasound

Yu, M., Peterson, M. R., Burgoine, K., Harbaugh, T., Olupot-Olupot, P., Gladstone, M., Hagmann, C., Cowan, F. M., Weeks, A., Morton, S. U., Mulondo, R., Mbabazi-Kabachelor, E., Schiff, S. J., Monga, V.

medrxiv logopreprintJul 22 2025
This paper addresses the problem of detecting possible serious bacterial infection (pSBI) of infancy, i.e. a clinical presentation consistent with bacterial sepsis in newborn infants using cranial ultrasound (cUS) images. The captured image set for each patient enables multiview imagery: coronal and sagittal, with geometric overlap. To exploit this geometric relation, we develop a new learning framework, called the intersection-guided Crossview Local-and Image-level Fusion Network (CLIF-Net). Our technique employs two distinct convolutional neural network branches to extract features from coronal and sagittal images with newly developed multi-level fusion blocks. Specifically, we leverage the spatial position of these images to locate the intersecting region. We then identify and enhance the semantic features from this region across multiple levels using cross-attention modules, facilitating the acquisition of mutually beneficial and more representative features from both views. The final enhanced features from the two views are then integrated and projected through the image-level fusion layer, outputting pSBI and non-pSBI class probabilities. We contend that our method of exploiting multi-view cUS images enables a first of its kind, robust 3D representation tailored for pSBI detection. When evaluated on a dataset of 302 cUS scans from Mbale Regional Referral Hospital in Uganda, CLIF-Net demonstrates substantially enhanced performance, surpassing the prevailing state-of-the-art infection detection techniques.

A View-Agnostic Deep Learning Framework for Comprehensive Analysis of 2D-Echocardiography

Anisuzzaman, D. M., Malins, J. G., Jackson, J. I., Lee, E., Naser, J. A., Rostami, B., Bird, J. G., Spiegelstein, D., Amar, T., Ngo, C. C., Oh, J. K., Pellikka, P. A., Thaden, J. J., Lopez-Jimenez, F., Poterucha, T. J., Friedman, P. A., Pislaru, S., Kane, G. C., Attia, Z. I.

medrxiv logopreprintJul 11 2025
Echocardiography traditionally requires experienced operators to select and interpret clips from specific viewing angles. Clinical decision-making is therefore limited for handheld cardiac ultrasound (HCU), which is often collected by novice users. In this study, we developed a view-agnostic deep learning framework to estimate left ventricular ejection fraction (LVEF), patient age, and patient sex from any of several views containing the left ventricle. Model performance was: (1) consistently strong across retrospective transthoracic echocardiography (TTE) datasets; (2) comparable between prospective HCU versus TTE (625 patients; LVEF r2 0.80 vs. 0.86, LVEF [> or [&le;]40%] AUC 0.981 vs. 0.993, age r2 0.85 vs. 0.87, sex classification AUC 0.985 vs. 0.996); (3) comparable between prospective HCU data collected by experts versus novice users (100 patients; LVEF r2 0.78 vs. 0.66, LVEF AUC 0.982 vs. 0.966). This approach may broaden the clinical utility of echocardiography by lessening the need for user expertise in image acquisition.

Predicting Cardiopulmonary Exercise Testing Performance in Patients Undergoing Transthoracic Echocardiography - An AI Based, Multimodal Model

Alishetti, S., Pan, W., Beecy, A. N., Liu, Z., Gong, A., Huang, Z., Clerkin, K. J., Goldsmith, R. L., Majure, D. T., Kelsey, C., vanMaanan, D., Ruhl, J., Tesfuzigta, N., Lancet, E., Kumaraiah, D., Sayer, G., Estrin, D., Weinberger, K., Kuleshov, V., Wang, F., Uriel, N.

medrxiv logopreprintJul 6 2025
Background and AimsTransthoracic echocardiography (TTE) is a widely available tool for diagnosing and managing heart failure but has limited predictive value for survival. Cardiopulmonary exercise test (CPET) performance strongly correlates with survival in heart failure patients but is less accessible. We sought to develop an artificial intelligence (AI) algorithm using TTE and electronic medical records to predict CPET peak oxygen consumption (peak VO2) [&le;] 14 mL/kg/min. MethodsAn AI model was trained to predict peak VO2 [&le;] 14 mL/kg/min from TTE images, structured TTE reports, demographics, medications, labs, and vitals. The training set included patients with a TTE within 6 months of a CPET. Performance was retrospectively tested in a held-out group from the development cohort and an external validation cohort. Results1,127 CPET studies paired with concomitant TTE were identified. The best performance was achieved by using all components (TTE images, all structured clinical data). The model performed well at predicting a peak VO2 [&le;] 14 mL/kg/min, with an AUROC of 0.84 (development cohort) and 0.80 (external validation cohort). It performed consistently well using higher ([&le;] 18 mL/kg/min) and lower ([&le;] 12 mL/kg/min) cut-offs. ConclusionsThis multimodal AI model effectively categorized patients into low and high risk predicted peak VO2, demonstrating the potential to identify previously unrecognized patients in need of advanced heart failure therapies where CPET is not available.

Artificial Intelligence in Prenatal Ultrasound: A Systematic Review of Diagnostic Tools for Detecting Congenital Anomalies

Dunne, J., Kumarasamy, C., Belay, D. G., Betran, A. P., Gebremedhin, A. T., Mengistu, S., Nyadanu, S. D., Roy, A., Tessema, G., Tigest, T., Pereira, G.

medrxiv logopreprintJul 5 2025
BackgroundArtificial intelligence (AI) has potentially shown promise in interpreting ultrasound imaging through flexible pattern recognition and algorithmic learning, but implementation in clinical practice remains limited. This study aimed to investigate the current application of AI in prenatal ultrasounds to identify congenital anomalies, and to synthesise challenges and opportunities for the advancement of AI-assisted ultrasound diagnosis. This comprehensive analysis addresses the clinical translation gap between AI performance metrics and practical implementation in prenatal care. MethodsSystematic searches were conducted in eight electronic databases (CINAHL Plus, Ovid/EMBASE, Ovid/MEDLINE, ProQuest, PubMed, Scopus, Web of Science and Cochrane Library) and Google Scholar from inception to May 2025. Studies were included if they applied an AI-assisted ultrasound diagnostic tool to identify a congenital anomaly during pregnancy. This review adhered to PRISMA guidelines for systematic reviews. We evaluated study quality using the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) guidelines. FindingsOf 9,918 records, 224 were identified for full-text review and 20 met the inclusion criteria. The majority of studies (11/20, 55%) were conducted in China, with most published after 2020 (16/20, 80%). All AI models were developed as an assistive tool for anomaly detection or classification. Most models (85%) focused on single-organ systems: heart (35%), brain/cranial (30%), or facial features (20%), while three studies (15%) attempted multi-organ anomaly detection. Fifty percent of the included studies reported exceptionally high model performance, with both sensitivity and specificity exceeding 0.95, with AUC-ROC values ranging from 0.91 to 0.97. Most studies (75%) lacked external validation, with internal validation often limited to small training and testing datasets. InterpretationWhile AI applications in prenatal ultrasound showed potential, current evidence indicates significant limitations in their practical implementation. Much work is required to optimise their application, including the external validation of diagnostic models with clinical utility to have real-world implications. Future research should prioritise larger-scale multi-centre studies, developing multi-organ anomaly detection capabilities rather than the current single-organ focus, and robust evaluation of AI tools in real-world clinical settings.

ToolCAP: Novel Tools to improve management of paediatric Community-Acquired Pneumonia - a randomized controlled trial- Statistical Analysis Plan

Cicconi, S., Glass, T., Du Toit, J., Bresser, M., Dhalla, F., Faye, P. M., Lal, L., Langet, H., Manji, K., Moser, A., Ndao, M. A., Palmer, M., Tine, J. A. D., Van Hoving, N., Keitel, K.

medrxiv logopreprintJun 30 2025
The ToolCAP cohort study is a prospective, observational, multi-site platform study designed to collect harmonized, high-quality clinical, imaging, and biological data on children with IMCI-defined pneumonia in low- and middle-income countries (LMICs). The primary objective is to inform the development and validation of diagnostic and prognostic tools, including lung ultrasound (LUS), point-of-care biomarkers, and AI-based models, to improve pneumonia diagnosis, management, and antimicrobial stewardship. This statistical analysis plan (SAP) outlines the analytic strategy for describing the study population, assessing the performance of candidate diagnostic tools, and enabling data sharing in support of secondary research questions and AI model development. Children under 12 years presenting with suspected pneumonia are enrolled within 24 hours of presentation and undergo clinical assessment, digital auscultation, LUS, and optional biological sampling. Follow-up occurs on Day 8 and Day 29 to assess outcomes including recovery, treatment response, and complications. The SAP details variable definitions, data management strategies, and pre-specified analyses, including descriptive summaries, sensitivity and specificity of diagnostic tools against clinical reference standards, and exploratory subgroup analyses.

Cardiac Measurement Calculation on Point-of-Care Ultrasonography with Artificial Intelligence

Mercaldo, S. F., Bizzo, B. C., Sadore, T., Halle, M. A., MacDonald, A. L., Newbury-Chaet, I., L'Italien, E., Schultz, A. S., Tam, V., Hegde, S. M., Mangion, J. R., Mehrotra, P., Zhao, Q., Wu, J., Hillis, J.

medrxiv logopreprintJun 28 2025
IntroductionPoint-of-care ultrasonography (POCUS) enables clinicians to obtain critical diagnostic information at the bedside especially in resource limited settings. This information may include 2D cardiac quantitative data, although measuring the data manually can be time-consuming and subject to user experience. Artificial intelligence (AI) can potentially automate this quantification. This study assessed the interpretation of key cardiac measurements on POCUS images by an AI-enabled device (AISAP Cardio V1.0). MethodsThis retrospective diagnostic accuracy study included 200 POCUS cases from four hospitals (two in Israel and two in the United States). Each case was independently interpreted by three cardiologists and the device for seven measurements (left ventricular (LV) ejection fraction, inferior vena cava (IVC) maximal diameter, left atrial (LA) area, right atrial (RA) area, LV end diastolic diameter, right ventricular (RV) fractional area change and aortic root diameter). The endpoints were the root mean square error (RMSE) of the device compared to the average cardiologist measurement (LV ejection fraction and IVC maximal diameter were primary endpoints; the other measurements were secondary endpoints). Predefined passing criteria were based on the upper bounds of the RMSE 95% confidence intervals (CIs). The inter-cardiologist RMSE was also calculated for reference. ResultsThe device achieved the passing criteria for six of the seven measurements. While not achieving the passing criterion for RV fractional area change, it still achieved a better RMSE than the inter-cardiologist RMSE. The RMSE was 6.20% (95% CI: 5.57 to 6.83; inter-cardiologist RMSE of 8.23%) for LV ejection fraction, 0.25cm (95% CI: 0.20 to 0.29; 0.36cm) for IVC maximal diameter, 2.39cm2 (95% CI: 1.96 to 2.82; 4.39cm2) for LA area, 2.11cm2 (95% CI: 1.75 to 2.47; 3.49cm2) for RA area, 5.06mm (95% CI: 4.58 to 5.55; 4.67mm) for LV end diastolic diameter, 10.17% (95% CI: 9.01 to 11.33; 14.12%) for RV fractional area change and 0.19cm (95% CI: 0.16 to 0.21; 0.24cm) for aortic root diameter. DiscussionThe device accurately calculated these cardiac measurements especially when benchmarked against inter-cardiologist variability. Its use could assist clinicians who utilize POCUS and better enable their clinical decision-making.

Step-by-Step Approach to Design Image Classifiers in AI: An Exemplary Application of the CNN Architecture for Breast Cancer Diagnosis

Lohani, A., Mishra, B. K., Wertheim, K. Y., Fagbola, T. M.

medrxiv logopreprintJun 17 2025
In recent years, different Convolutional Neural Networks (CNNs) approaches have been applied for image classification in general and specific problems such as breast cancer diagnosis, but there is no standardising approach to facilitate comparison and synergy. This paper attempts a step-by-step approach to standardise a common application of image classification with the specific problem of classifying breast ultrasound images for breast cancer diagnosis as an illustrative example. In this study, three distinct datasets: Breast Ultrasound Image (BUSI), Breast Ultrasound Image (BUI), and Ultrasound Breast Images for Breast Cancer (UBIBC) datasets have been used to build and fine-tune custom and pre-trained CNN models systematically. Custom CNN models have been built, and hence, transfer learning (TL) has been applied to deploy a broad range of pre-trained models, optimised by applying data augmentation techniques and hyperparameter tuning. Models were trained and tested in scenarios involving limited and large datasets to gain insights into their robustness and generality. The obtained results indicated that the custom CNN and VGG19 are the two most suitable architectures for this problem. The experimental results highlight the significance of employing an effective step-by-step approach in image classification tasks to enhance the robustness and generalisation capabilities of CNN-based classifiers.

Evaluating the performance and potential bias of predictive models for the detection of transthyretin cardiac amyloidosis

Hourmozdi, J., Easton, N., Benigeri, S., Thomas, J. D., Narang, A., Ouyang, D., Duffy, G., Upton, R., Hawkes, W., Akerman, A., Okwuosa, I., Kline, A., Kho, A. N., Luo, Y., Shah, S. J., Ahmad, F. S.

medrxiv logopreprintJun 2 2025
BackgroundDelays in the diagnosis of transthyretin amyloid cardiomyopathy (ATTR-CM) contribute to the significant morbidity of the condition, especially in the era of disease-modifying therapies. Screening for ATTR-CM with AI and other algorithms may improve timely diagnosis, but these algorithms have not been directly compared. ObjectivesThe aim of this study was to compare the performance of four algorithms for ATTR-CM detection in a heart failure population and assess the risk for harms due to model bias. MethodsWe identified patients in an integrated health system from 2010-2022 with ATTR-CM and age- and sex-matched them to controls with heart failure to target 5% prevalence. We compared the performance of a claims-based random forest model (Huda et al. model), a regression-based score (Mayo ATTR-CM), and two deep learning echo models (EchoNet-LVH and EchoGo(R) Amyloidosis). We evaluated for bias using standard fairness metrics. ResultsThe analytical cohort included 176 confirmed cases of ATTR-CM and 3192 control patients with 79.2% self-identified as White and 9.0% as Black. The Huda et al. model performed poorly (AUC 0.49). Both deep learning echo models had a higher AUC when compared to the Mayo ATTR-CM Score (EchoNet-LVH 0.88; EchoGo Amyloidosis 0.92; Mayo ATTR-CM Score 0.79; DeLong P<0.001 for both). Bias auditing met fairness criteria for equal opportunity among patients who identified as Black. ConclusionsDeep learning, echo-based models to detect ATTR-CM demonstrated best overall discrimination when compared to two other models in external validation with low risk of harms due to racial bias.
Page 1 of 217 results
Show
per page
12»

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.