Back to all papers

Automated Deep Learning-Based Detection of Early Atherosclerotic Plaques in Carotid Ultrasound Imaging

Authors

Omarov, M.,Zhang, L.,Doroodgar Jorshery, S.,Malik, R.,Das, B.,Bellomo, T. R.,Mansmann, U.,Menten, M. J.,Natarajan, P.,Dichgans, M.,Kalic, M.,Raghu, V. K.,Berger, K.,Anderson, C. D.,Georgakis, M. K.

Affiliations (1)

  • Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany; Program in Medical and Population Genetics and Cardiovascular

Abstract

BackgroundCarotid plaque presence is associated with cardiovascular risk, even among asymptomatic individuals. While deep learning has shown promise for carotid plaque phenotyping in patients with advanced atherosclerosis, its application in population-based settings of asymptomatic individuals remains unexplored. MethodsWe developed a YOLOv8-based model for plaque detection using carotid ultrasound images from 19,499 participants of the population-based UK Biobank (UKB) and fine-tuned it for external validation in the BiDirect study (N = 2,105). Cox regression was used to estimate the impact of plaque presence and count on major cardiovascular events. To explore the genetic architecture of carotid atherosclerosis, we conducted a genome-wide association study (GWAS) meta-analysis of the UKB and CHARGE cohorts. Mendelian randomization (MR) assessed the effect of genetic predisposition to vascular risk factors on carotid atherosclerosis. ResultsOur model demonstrated high performance with accuracy, sensitivity, and specificity exceeding 85%, enabling identification of carotid plaques in 45% of the UKB population (aged 47-83 years). In the external BiDirect cohort, a fine-tuned model achieved 86% accuracy, 78% sensitivity, and 90% specificity. Plaque presence and count were associated with risk of major adverse cardiovascular events (MACE) over a follow-up of up to seven years, improving risk reclassification beyond the Pooled Cohort Equations. A GWAS meta-analysis of carotid plaques uncovered two novel genomic loci, with downstream analyses implicating targets of investigational drugs in advanced clinical development. Observational and MR analyses showed associations between smoking, LDL cholesterol, hypertension, and odds of carotid atherosclerosis. ConclusionsOur model offers a scalable solution for early carotid plaque detection, potentially enabling automated screening in asymptomatic individuals and improving plaque phenotyping in population-based cohorts. This approach could advance large-scale atherosclerosis research. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=131 SRC="FIGDIR/small/24315675v2_ufig1.gif" ALT="Figure 1"> View larger version (33K): [email protected]@27a04corg.highwire.dtl.DTLVardef@18cef18org.highwire.dtl.DTLVardef@1a53d8f_HPS_FORMAT_FIGEXP M_FIG O_FLOATNOGRAPHICAL ABSTRACT.C_FLOATNO ASCVD - Atherosclerotic Cardiovascular Disease, CVD - Cardiovascular disease, PCE - Pooled Cohort Equations, TP- true positive, FN - False Negative, FP - False Positive, TN - True Negative, GWAS - Genome-Wide Association Study. C_FIG CLINICAL PERSPECTIVECarotid ultrasound is a well-established method for assessing subclinical atherosclerosis with potential to improve cardiovascular risk assessment in asymptomatic individuals. Deep learning could automate plaque screening and enable processing of large imaging datasets, reducing the need for manual annotation. Integrating such large-scale carotid ultrasound datasets with clinical, genetic, and other relevant data can advance cardiovascular research. Prior studies applying deep learning to carotid ultrasound have focused on technical tasks-plaque classification, segmentation, and characterization-in small sample sizes of patients with advanced atherosclerosis. However, they did not assess the potential of deep learning in detecting plaques in asymptomatic individuals at the population level. We developed an efficient deep learning model for the automated detection and quantification of early carotid plaques in ultrasound imaging, primarily in asymptomatic individuals. The model demonstrated high accuracy and external validity across population-based cohort studies. Predicted plaque prevalence aligned with known cardiovascular risk factors. Importantly, predicted plaque presence and count were associated with future cardiovascular events and improved reclassification of asymptomatic individuals into clinically meaningful risk categories. Integrating our model predictions with genetic data identified two novel loci associated with carotid plaque presence--both previously linked to cardiovascular disease--highlighting the models potential for population-scale atherosclerosis research. Our model provides a scalable solution for automated carotid plaque phenotyping in ultrasound images at the population level. These findings support its use for automated screening in asymptomatic individuals and for streamlining plaque phenotyping in large cohorts, thereby advancing research on subclinical atherosclerosis in the general population.

Topics

cardiovascular medicine

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.