Back to all papers

Multi-View Echocardiographic Embedding for Accessible AI Development

Authors

Tohyama, T.,Han, A.,Yoon, D.,Paik, K.,Gow, B.,Izath, N.,Kpodonu, J.,Celi, L. A.

Affiliations (1)

  • 5. Faculty of Computing and Informatics, Mbarara University of Science and Technology Data Science Research Hub (MUDSReH), Mbarara, Uganda

Abstract

Background and AimsEchocardiography serves as a cornerstone of cardiovascular diagnostics through multiple standardized imaging views. While recent AI foundation models demonstrate superior capabilities across cardiac imaging tasks, their massive computational requirements and reliance on large-scale datasets create accessibility barriers, limiting AI development to well-resourced institutions. Vector embedding approaches offer promising solutions by leveraging compact representations from original medical images for downstream applications. Furthermore, demographic fairness remains critical, as AI models may incorporate biases that confound clinically relevant features. We developed a multi-view encoder framework to address computational accessibility while investigating demographic fairness challenges. MethodsWe utilized the MIMIC-IV-ECHO dataset (7,169 echocardiographic studies) to develop a transformer-based multi-view encoder that aggregates view-level representations into study-level embeddings. The framework incorporated adversarial learning to suppress demographic information while maintaining clinical performance. We evaluated performance across 21 binary classification tasks encompassing echocardiographic measurements and clinical diagnoses, comparing against foundation model baselines with varying adversarial weights. ResultsThe multi-view encoder achieved a mean improvement of 9.0 AUC points (12.0% relative improvement) across clinical tasks compared to foundation model embeddings. Performance remained robust with limited echocardiographic views compared to the conventional approach. However, adversarial learning showed limited effectiveness in reducing demographic shortcuts, with stronger weighting substantially compromising diagnostic performance. ConclusionsOur framework democratizes advanced cardiac AI capabilities, enabling substantial diagnostic improvements without massive computational infrastructure. While algorithmic approaches to demographic fairness showed limitations, the multi-view encoder provides a practical pathway for broader AI adoption in cardiovascular medicine with enhanced efficiency in real-world clinical settings. Structured graphical abstract or graphical abstractO_ST_ABSKey QuestionC_ST_ABSCan multi-view encoder frameworks achieve superior diagnostic performance compared to foundation model embeddings while reducing computational requirements and maintaining robust performance with fewer echocardiographic views for cardiac AI applications? Key FindingMulti-view encoder achieved 12.0% relative improvement (9.0 AUC points) across 21 cardiac tasks compared to foundation model baselines, with efficient 512-dimensional vector embeddings and robust performance using fewer echocardiographic views. Take-home MessageVector embedding approaches with attention-based multi-view integration significantly improve cardiac diagnostic performance while reducing computational requirements, offering a pathway toward more efficient AI implementation in clinical settings. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=83 SRC="FIGDIR/small/25333725v1_ufig1.gif" ALT="Figure 1"> View larger version (22K): [email protected]@a75818org.highwire.dtl.DTLVardef@88a588org.highwire.dtl.DTLVardef@12bad06_HPS_FORMAT_FIGEXP M_FIG C_FIG Translational PerspectiveOur proposed multi-view encoder framework overcomes critical barriers to the widespread adoption of artificial intelligence in echocardiography. By dramatically reducing computational requirements, the multi-view encoder approach allows smaller healthcare institutions to develop sophisticated AI models locally. The framework maintains robust performance with fewer echocardiographic examinations, which addresses real-world clinical constraints where comprehensive imaging is not feasible due to patient factors or time limitations. This technology provides a practical way to democratize advanced cardiac AI capabilities, which could improve access to cardiovascular care across diverse healthcare settings while reducing dependence on proprietary datasets and massive computational resources.

Topics

cardiovascular medicine

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.