Deep Learning-Based Multi-View Echocardiographic Framework for Comprehensive Diagnosis of Pericardial Disease

Authors

Jeong, S.,Moon, I.,Jeon, J.,Jeong, D.,Lee, J.,kim, J.,Lee, S.-A.,Jang, Y.,Yoon, Y. E.,Chang, H.-J.

Affiliations (1)

  • Seoul National University Bundang Hospital and Ontact Health Inc.

Abstract

BackgroundPericardial disease exhibits a wide clinical spectrum, ranging from mild effusions to life-threatening tamponade or constriction pericarditis. While transthoracic echocardiography (TTE) is the primary diagnostic modality, its effectiveness is limited by operator dependence and incomplete evaluation of functional impact. Existing artificial intelligence models focus primarily on effusion detection, lacking comprehensive disease assessment. MethodsWe developed a deep learning (DL)-based framework that sequentially assesses pericardial disease: (1) morphological changes, including pericardial effusion amount (normal/small/moderate/large) and pericardial thickening or adhesion (yes/no), using five B-mode views, and (2) hemodynamic significance (yes/no), incorporating additional inputs from Doppler and inferior vena cava measurements. The developmental dataset comprises 2,253 TTEs from multiple Korean institutions (225 for internal testing), and the independent external test set consists of 274 TTEs. ResultsIn the internal test set, the model achieved diagnostic accuracy of 81.8-97.3% for pericardial effusion classification, 91.6% for pericardial thickening/adhesion, and 86.2% for hemodynamic significance. Corresponding accuracy in the external test set was 80.3-94.2%, 94.5%, and 85.5%, respectively. Area under the receiver operating curves (AUROCs) for the three tasks in the internal test set was 0.92-0.99, 0.90, and 0.79; and in the external test set, 0.95-0.98, 0.85, and 0.76. Sensitivity for detecting pericardial thickening/adhesion and hemodynamic significance was modest (66.7% and 68.8% in the internal test set), but improved substantially when cases with poor image quality were excluded (77.3%, and 80.8%). Similar performance gains were observed in subgroups with complete target views and a higher number of available video clips. ConclusionsThis study presents the first DL-based TTE model capable of comprehensive evaluation of pericardial disease, integrating both morphological and functional assessments. The proposed framework demonstrated strong generalizability and aligned with the real-world diagnostic workflow. However, caution is warranted when interpreting results under suboptimal imaging conditions.

Topics

cardiovascular medicine

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.