Sort by:
Page 99 of 1411408 results

Predicting progression-free survival in sarcoma using MRI-based automatic segmentation models and radiomics nomograms: a preliminary multicenter study.

Zhu N, Niu F, Fan S, Meng X, Hu Y, Han J, Wang Z

pubmed logopapersJul 1 2025
Some sarcomas are highly malignant, associated with high recurrence despite treatment. This multicenter study aimed to develop and validate a radiomics signature to estimate sarcoma progression-free survival (PFS). The study retrospectively enrolled 202 consecutive patients with pathologically diagnosed sarcoma, who had pre-treatment axial fat-suppressed T2-weighted images (FS-T2WI), and included them in the ROI-Net model for training. Among them, 120 patients were included in the radiomics analysis, all of whom had pre-treatment axial T1-weighted and transverse FS-T2WI images, and were randomly divided into a development group (n = 96) and a validation group (n = 24). In the development cohort, Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression was used to develop the radiomics features for PFS prediction. By combining significant clinical features with radiomics features, a nomogram was constructed using Cox regression. The proposed ROI-Net framework achieved a Dice coefficient of 0.820 (0.791-0.848). The radiomics signature based on 21 features could distinguish high-risk patients with poor PFS. Univariate Cox analysis revealed that peritumoral edema, metastases, and the radiomics score were associated with poor PFS and were included in the construction of the nomogram. The Radiomics-T1WI-Clinical model exhibited the best performance, with AUC values of 0.947, 0.907, and 0.924 at 300 days, 600 days, and 900 days, respectively. The proposed ROI-Net framework demonstrated high consistency between its segmentation results and expert annotations. The radiomics features and the combined nomogram have the potential to aid in predicting PFS for patients with sarcoma.

Feasibility/clinical utility of half-Fourier single-shot turbo spin echo imaging combined with deep learning reconstruction in gynecologic magnetic resonance imaging.

Kirita M, Himoto Y, Kurata Y, Kido A, Fujimoto K, Abe H, Matsumoto Y, Harada K, Morita S, Yamaguchi K, Nickel D, Mandai M, Nakamoto Y

pubmed logopapersJul 1 2025
When antispasmodics are unavailable, the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER; called BLADE by Siemens Healthineers) or half Fourier single-shot turbo spin echo (HASTE) is clinically used in gynecologic MRI. However, their imaging qualities are limited compared to Turbo Spin Echo (TSE) with antispasmodics. Even with antispasmodics, TSE can be artifact-affected, necessitating a rapid backup sequence. This study aimed to investigate the utility of HASTE with deep learning reconstruction and variable flip angle evolution (iHASTE) compared to conventional sequences with and without antispasmodics. This retrospective study included MRI scans without antispasmodics for 79 patients who underwent iHASTE, HASTE, and BLADE and MRI scans with antispasmodics for 79 case-control matched patients who underwent TSE. Three radiologists qualitatively evaluated image quality, robustness to artifacts, tissue contrast, and uterine lesion margins. Tissue contrast was also quantitatively evaluated. Quantitative evaluations revealed that iHASTE exhibited significantly superior tissue contrast to HASTE and BLADE. Qualitative evaluations indicated that iHASTE outperformed HASTE in overall quality. Two of three radiologists judged iHASTE to be significantly superior to BLADE, while two of three judged TSE to be significantly superior to iHASTE. iHASTE demonstrated greater robustness to artifacts than both BLADE and TSE. Lesion margins in iHASTE had lower scores than BLADE and TSE. iHASTE is a viable clinical option in patients undergoing gynecologic MRI with anti-spasmodics. iHASTE may also be considered as a useful add-on sequence in patients undergoing MRI with antispasmodics.

Generalizability, robustness, and correction bias of segmentations of thoracic organs at risk in CT images.

Guérendel C, Petrychenko L, Chupetlovska K, Bodalal Z, Beets-Tan RGH, Benson S

pubmed logopapersJul 1 2025
This study aims to assess and compare two state-of-the-art deep learning approaches for segmenting four thoracic organs at risk (OAR)-the esophagus, trachea, heart, and aorta-in CT images in the context of radiotherapy planning. We compare a multi-organ segmentation approach and the fusion of multiple single-organ models, each dedicated to one OAR. All were trained using nnU-Net with the default parameters and the full-resolution configuration. We evaluate their robustness with adversarial perturbations, and their generalizability on external datasets, and explore potential biases introduced by expert corrections compared to fully manual delineations. The two approaches show excellent performance with an average Dice score of 0.928 for the multi-class setting and 0.930 when fusing the four single-organ models. The evaluation of external datasets and common procedural adversarial noise demonstrates the good generalizability of these models. In addition, expert corrections of both models show significant bias to the original automated segmentation. The average Dice score between the two corrections is 0.93, ranging from 0.88 for the trachea to 0.98 for the heart. Both approaches demonstrate excellent performance and generalizability in segmenting four thoracic OARs, potentially improving efficiency in radiotherapy planning. However, the multi-organ setting proves advantageous for its efficiency, requiring less training time and fewer resources, making it a preferable choice for this task. Moreover, corrections of AI segmentation by clinicians may lead to biases in the results of AI approaches. A test set, manually annotated, should be used to assess the performance of such methods. Question While manual delineation of thoracic organs at risk is labor-intensive, prone to errors, and time-consuming, evaluation of AI models performing this task lacks robustness. Findings The deep-learning model using the nnU-Net framework showed excellent performance, generalizability, and robustness in segmenting thoracic organs in CT, enhancing radiotherapy planning efficiency. Clinical relevance Automatic segmentation of thoracic organs at risk can save clinicians time without compromising the quality of the delineations, and extensive evaluation across diverse settings demonstrates the potential of integrating such models into clinical practice.

Deep learning-based image domain reconstruction enhances image quality and pulmonary nodule detection in ultralow-dose CT with adaptive statistical iterative reconstruction-V.

Ye K, Xu L, Pan B, Li J, Li M, Yuan H, Gong NJ

pubmed logopapersJul 1 2025
To evaluate the image quality and lung nodule detectability of ultralow-dose CT (ULDCT) with adaptive statistical iterative reconstruction-V (ASiR-V) post-processed using a deep learning image reconstruction (DLIR)-based image domain compared to low-dose CT (LDCT) and ULDCT without DLIR. A total of 210 patients undergoing lung cancer screening underwent LDCT (mean ± SD, 0.81 ± 0.28 mSv) and ULDCT (0.17 ± 0.03 mSv) scans. ULDCT images were reconstructed with ASiR-V (ULDCT-ASiR-V) and post-processed using DLIR (ULDCT-DLIR). The quality of the three CT images was analyzed. Three radiologists detected and measured pulmonary nodules on all CT images, with LDCT results serving as references. Nodule conspicuity was assessed using a five-point Likert scale, followed by further statistical analyses. A total of 463 nodules were detected using LDCT. The image noise of ULDCT-DLIR decreased by 60% compared to that of ULDCT-ASiR-V and was lower than that of LDCT (p < 0.001). The subjective image quality scores for ULDCT-DLIR (4.4 [4.1, 4.6]) were also higher than those for ULDCT-ASiR-V (3.6 [3.1, 3.9]) (p < 0.001). The overall nodule detection rates for ULDCT-ASiR-V and ULDCT-DLIR were 82.1% (380/463) and 87.0% (403/463), respectively (p < 0.001). The percentage difference between diameters > 1 mm was 2.9% (ULDCT-ASiR-V vs. LDCT) and 0.5% (ULDCT-DLIR vs. LDCT) (p = 0.009). Scores of nodule imaging sharpness on ULDCT-DLIR (4.0 ± 0.68) were significantly higher than those on ULDCT-ASiR-V (3.2 ± 0.50) (p < 0.001). DLIR-based image domain improves image quality, nodule detection rate, nodule imaging sharpness, and nodule measurement accuracy of ASiR-V on ULDCT. Question Deep learning post-processing is simple and cheap compared with raw data processing, but its performance is not clear on ultralow-dose CT. Findings Deep learning post-processing enhanced image quality and improved the nodule detection rate and accuracy of nodule measurement of ultralow-dose CT. Clinical relevance Deep learning post-processing improves the practicability of ultralow-dose CT and makes it possible for patients with less radiation exposure during lung cancer screening.

Malignancy risk stratification for pulmonary nodules: comparing a deep learning approach to multiparametric statistical models in different disease groups.

Piskorski L, Debic M, von Stackelberg O, Schlamp K, Welzel L, Weinheimer O, Peters AA, Wielpütz MO, Frauenfelder T, Kauczor HU, Heußel CP, Kroschke J

pubmed logopapersJul 1 2025
Incidentally detected pulmonary nodules present a challenge in clinical routine with demand for reliable support systems for risk classification. We aimed to evaluate the performance of the lung-cancer-prediction-convolutional-neural-network (LCP-CNN), a deep learning-based approach, in comparison to multiparametric statistical methods (Brock model and Lung-RADS®) for risk classification of nodules in cohorts with different risk profiles and underlying pulmonary diseases. Retrospective analysis was conducted on non-contrast and contrast-enhanced CT scans containing pulmonary nodules measuring 5-30 mm. Ground truth was defined by histology or follow-up stability. The final analysis was performed on 297 patients with 422 eligible nodules, of which 105 nodules were malignant. Classification performance of the LCP-CNN, Brock model, and Lung-RADS® was evaluated in terms of diagnostic accuracy measurements including ROC-analysis for different subcohorts (total, screening, emphysema, and interstitial lung disease). LCP-CNN demonstrated superior performance compared to the Brock model in total and screening cohorts (AUC 0.92 (95% CI: 0.89-0.94) and 0.93 (95% CI: 0.89-0.96)). Superior sensitivity of LCP-CNN was demonstrated compared to the Brock model and Lung-RADS® in total, screening, and emphysema cohorts for a risk threshold of 5%. Superior sensitivity of LCP-CNN was also shown across all disease groups compared to the Brock model at a threshold of 65%, compared to Lung-RADS® sensitivity was better or equal. No significant differences in the performance of LCP-CNN were found between subcohorts. This study offers further evidence of the potential to integrate deep learning-based decision support systems into pulmonary nodule classification workflows, irrespective of the individual patient risk profile and underlying pulmonary disease. Question Is a deep-learning approach (LCP-CNN) superior to multiparametric models (Brock model, Lung-RADS®) in classifying pulmonary nodule risk across varied patient profiles? Findings LCP-CNN shows superior performance in risk classification of pulmonary nodules compared to multiparametric models with no significant impact on risk profiles and structural pulmonary diseases. Clinical relevance LCP-CNN offers efficiency and accuracy, addressing limitations of traditional models, such as variations in manual measurements or lack of patient data, while producing robust results. Such approaches may therefore impact clinical work by complementing or even replacing current approaches.

Preoperative discrimination of absence or presence of myometrial invasion in endometrial cancer with an MRI-based multimodal deep learning radiomics model.

Chen Y, Ruan X, Wang X, Li P, Chen Y, Feng B, Wen X, Sun J, Zheng C, Zou Y, Liang B, Li M, Long W, Shen Y

pubmed logopapersJul 1 2025
Accurate preoperative evaluation of myometrial invasion (MI) is essential for treatment decisions in endometrial cancer (EC). However, the diagnostic accuracy of commonly utilized magnetic resonance imaging (MRI) techniques for this assessment exhibits considerable variability. This study aims to enhance preoperative discrimination of absence or presence of MI by developing and validating a multimodal deep learning radiomics (MDLR) model based on MRI. During March 2010 and February 2023, 1139 EC patients (age 54.771 ± 8.465 years; range 24-89 years) from five independent centers were enrolled retrospectively. We utilized ResNet18 to extract multi-scale deep learning features from T2-weighted imaging followed by feature selection via Mann-Whitney U test. Subsequently, a Deep Learning Signature (DLS) was formulated using Integrated Sparse Bayesian Extreme Learning Machine. Furthermore, we developed Clinical Model (CM) based on clinical characteristics and MDLR model by integrating clinical characteristics with DLS. The area under the curve (AUC) was used for evaluating diagnostic performance of the models. Decision curve analysis (DCA) and integrated discrimination index (IDI) were used to assess the clinical benefit and compare the predictive performance of models. The MDLR model comprised of age, histopathologic grade, subjective MR findings (TMD and Reading for MI status) and DLS demonstrated the best predictive performance. The AUC values for MDLR in training set, internal validation set, external validation set 1, and external validation set 2 were 0.899 (95% CI, 0.866-0.926), 0.874 (95% CI, 0.829-0.912), 0.862 (95% CI, 0.817-0.899) and 0.867 (95% CI, 0.806-0.914) respectively. The IDI and DCA showed higher diagnostic performance and clinical net benefits for the MDLR than for CM or DLS, which revealed MDLR may enhance decision-making support. The MDLR which incorporated clinical characteristics and DLS could improve preoperative accuracy in discriminating absence or presence of MI. This improvement may facilitate individualized treatment decision-making for EC.

CT-based clinical-radiomics model to predict progression and drive clinical applicability in locally advanced head and neck cancer.

Bruixola G, Dualde-Beltrán D, Jimenez-Pastor A, Nogué A, Bellvís F, Fuster-Matanzo A, Alfaro-Cervelló C, Grimalt N, Salhab-Ibáñez N, Escorihuela V, Iglesias ME, Maroñas M, Alberich-Bayarri Á, Cervantes A, Tarazona N

pubmed logopapersJul 1 2025
Definitive chemoradiation is the primary treatment for locally advanced head and neck carcinoma (LAHNSCC). Optimising outcome predictions requires validated biomarkers, since TNM8 and HPV could have limitations. Radiomics may enhance risk stratification. This single-centre observational study collected clinical data and baseline CT scans from 171 LAHNSCC patients treated with chemoradiation. The dataset was divided into training (80%) and test (20%) sets, with a 5-fold cross-validation on the training set. Researchers extracted 108 radiomics features from each primary tumour and applied survival analysis and classification models to predict progression-free survival (PFS) and 5-year progression, respectively. Performance was evaluated using inverse probability of censoring weights and c-index for the PFS model and AUC, sensitivity, specificity, and accuracy for the 5-year progression model. Feature importance was measured by the SHapley Additive exPlanations (SHAP) method and patient stratification was assessed through Kaplan-Meier curves. The final dataset included 171 LAHNSCC patients, with 53% experiencing disease progression at 5 years. The random survival forest model best predicted PFS, with an AUC of 0.64 and CI of 0.66 on the test set, highlighting 4 radiomics features and TNM8 as significant contributors. It successfully stratified patients into low and high-risk groups (log-rank p < 0.005). The extreme gradient boosting model most effectively predicted a 5-year progression, incorporating 12 radiomics features and four clinical variables, achieving an AUC of 0.74, sensitivity of 0.53, specificity of 0.81, and accuracy of 0.66 on the test set. The combined clinical-radiomics model improved the standard TNM8 and clinical variables in predicting 5-year progression though further validation is necessary. Question There is an unmet need for non-invasive biomarkers to guide treatment in locally advanced head and neck cancer. Findings Clinical data (TNM8 staging, primary tumour site, age, and smoking) plus radiomics improved 5-year progression prediction compared with the clinical comprehensive model or TNM staging alone. Clinical relevance SHAP simplifies complex machine learning radiomics models for clinicians by using easy-to-understand graphical representations, promoting explainability.

Automated vs manual cardiac MRI planning: a single-center prospective evaluation of reliability and scan times.

Glessgen C, Crowe LA, Wetzl J, Schmidt M, Yoon SS, Vallée JP, Deux JF

pubmed logopapersJul 1 2025
Evaluating the impact of an AI-based automated cardiac MRI (CMR) planning software on procedure errors and scan times compared to manual planning alone. Consecutive patients undergoing non-stress CMR were prospectively enrolled at a single center (August 2023-February 2024) and randomized into manual, or automated scan execution using prototype software. Patients with pacemakers, targeted indications, or inability to consent were excluded. All patients underwent the same CMR protocol with contrast, in breath-hold (BH) or free breathing (FB). Supervising radiologists recorded procedure errors (plane prescription, forgotten views, incorrect propagation of cardiac planes, and field-of-view mismanagement). Scan times and idle phase (non-acquisition portion) were computed from scanner logs. Most data were non-normally distributed and compared using non-parametric tests. Eighty-two patients (mean age, 51.6 years ± 17.5; 56 men) were included. Forty-four patients underwent automated and 38 manual CMRs. The mean rate of procedure errors was significantly (p = 0.01) lower in the automated (0.45) than in the manual group (1.13). The rate of error-free examinations was higher (p = 0.03) in the automated (31/44; 70.5%) than in the manual group (17/38; 44.7%). Automated studies were shorter than manual studies in FB (30.3 vs 36.5 min, p < 0.001) but had similar durations in BH (42.0 vs 43.5 min, p = 0.42). The idle phase was lower in automated studies for FB and BH strategies (both p < 0.001). An AI-based automated software performed CMR at a clinical level with fewer planning errors and improved efficiency compared to manual planning. Question What is the impact of an AI-based automated CMR planning software on procedure errors and scan times compared to manual planning alone? Findings Software-driven examinations were more reliable (71% error-free) than human-planned ones (45% error-free) and showed improved efficiency with reduced idle time. Clinical relevance CMR examinations require extensive technologist training, and continuous attention, and involve many planning steps. A fully automated software reliably acquired non-stress CMR potentially reducing mistake risk and increasing data homogeneity.

Machine-learning model based on ultrasomics for non-invasive evaluation of fibrosis in IgA nephropathy.

Huang Q, Huang F, Chen C, Xiao P, Liu J, Gao Y

pubmed logopapersJul 1 2025
To develop and validate an ultrasomics-based machine-learning (ML) model for non-invasive assessment of interstitial fibrosis and tubular atrophy (IF/TA) in patients with IgA nephropathy (IgAN). In this multi-center retrospective study, 471 patients with primary IgA nephropathy from four institutions were included (training, n = 275; internal testing, n = 69; external testing, n = 127; respectively). The least absolute shrinkage and selection operator logistic regression with tenfold cross-validation was used to identify the most relevant features. The ML models were constructed based on ultrasomics. The Shapley Additive Explanation (SHAP) was used to explore the interpretability of the models. Logistic regression analysis was employed to combine ultrasomics, clinical data, and ultrasound imaging characteristics, creating a comprehensive model. A receiver operating characteristic curve, calibration, decision curve, and clinical impact curve were used to evaluate prediction performance. To differentiate between mild and moderate-to-severe IF/TA, three prediction models were developed: the Rad_SVM_Model, Clinic_LR_Model, and Rad_Clinic_Model. The area under curves of these three models were 0.861, 0.884, and 0.913 in the training cohort, and 0.760, 0.860, and 0.894 in the internal validation cohort, as well as 0.794, 0.865, and 0.904 in the external validation cohort. SHAP identified the contribution of radiomics features. Difference analysis showed that there were significant differences between radiomics features and fibrosis. The comprehensive model was superior to that of individual indicators and performed well. We developed and validated a model that combined ultrasomics, clinical data, and clinical ultrasonic characteristics based on ML to assess the extent of fibrosis in IgAN. Question Currently, there is a lack of a comprehensive ultrasomics-based machine-learning model for non-invasive assessment of the extent of Immunoglobulin A nephropathy (IgAN) fibrosis. Findings We have developed and validated a robust and interpretable machine-learning model based on ultrasomics for assessing the degree of fibrosis in IgAN. Clinical relevance The machine-learning model developed in this study has significant interpretable clinical relevance. The ultrasomics-based comprehensive model had the potential for non-invasive assessment of fibrosis in IgAN, which helped evaluate disease progress.

Intraindividual Comparison of Image Quality Between Low-Dose and Ultra-Low-Dose Abdominal CT With Deep Learning Reconstruction and Standard-Dose Abdominal CT Using Dual-Split Scan.

Lee TY, Yoon JH, Park JY, Park SH, Kim H, Lee CM, Choi Y, Lee JM

pubmed logopapersJul 1 2025
The aim of this study was to intraindividually compare the conspicuity of focal liver lesions (FLLs) between low- and ultra-low-dose computed tomography (CT) with deep learning reconstruction (DLR) and standard-dose CT with model-based iterative reconstruction (MBIR) from a single CT using dual-split scan in patients with suspected liver metastasis via a noninferiority design. This prospective study enrolled participants who met the eligibility criteria at 2 tertiary hospitals in South Korea from June 2022 to January 2023. The criteria included ( a ) being aged between 20 and 85 years and ( b ) having suspected or known liver metastases. Dual-source CT scans were conducted, with the standard radiation dose divided in a 2:1 ratio between tubes A and B (67% and 33%, respectively). The voltage settings of 100/120 kVp were selected based on the participant's body mass index (<30 vs ≥30 kg/m 2 ). For image reconstruction, MBIR was utilized for standard-dose (100%) images, whereas DLR was employed for both low-dose (67%) and ultra-low-dose (33%) images. Three radiologists independently evaluated FLL conspicuity, the probability of metastasis, and subjective image quality using a 5-point Likert scale, in addition to quantitative signal-to-noise and contrast-to-noise ratios. The noninferiority margins were set at -0.5 for conspicuity and -0.1 for detection. One hundred thirty-three participants (male = 58, mean body mass index = 23.0 ± 3.4 kg/m 2 ) were included in the analysis. The low- and ultra-low- dose had a lower radiation dose than the standard-dose (median CT dose index volume: 3.75, 1.87 vs 5.62 mGy, respectively, in the arterial phase; 3.89, 1.95 vs 5.84 in the portal venous phase, P < 0.001 for all). Median FLL conspicuity was lower in the low- and ultra-low-dose scans compared with the standard-dose (3.0 [interquartile range, IQR: 2.0, 4.0], 3.0 [IQR: 1.0, 4.0] vs 3.0 [IQR: 2.0, 4.0] in the arterial phase; 4.0 [IQR: 1.0, 5.0], 3.0 [IQR: 1.0, 4.0] vs 4.0 [IQR: 2.0, 5.0] in the portal venous phases), yet within the noninferiority margin ( P < 0.001 for all). FLL detection was also lower but remained within the margin (lesion detection rate: 0.772 [95% confidence interval, CI: 0.727, 0.812], 0.754 [0.708, 0.795], respectively) compared with the standard-dose (0.810 [95% CI: 0.770, 0.844]). Sensitivity for liver metastasis differed between the standard- (80.6% [95% CI: 76.0, 84.5]), low-, and ultra-low-doses (75.7% [95% CI: 70.2, 80.5], 73.7 [95% CI: 68.3, 78.5], respectively, P < 0.001 for both), whereas specificity was similar ( P > 0.05). Low- and ultra-low-dose CT with DLR showed noninferior FLL conspicuity and detection compared with standard-dose CT with MBIR. Caution is needed due to a potential decrease in sensitivity for metastasis ( clinicaltrials.gov/NCT05324046 ).
Page 99 of 1411408 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.