Sort by:
Page 98 of 99986 results

Rethinking Boundary Detection in Deep Learning-Based Medical Image Segmentation

Yi Lin, Dong Zhang, Xiao Fang, Yufan Chen, Kwang-Ting Cheng, Hao Chen

arxiv logopreprintMay 6 2025
Medical image segmentation is a pivotal task within the realms of medical image analysis and computer vision. While current methods have shown promise in accurately segmenting major regions of interest, the precise segmentation of boundary areas remains challenging. In this study, we propose a novel network architecture named CTO, which combines Convolutional Neural Networks (CNNs), Vision Transformer (ViT) models, and explicit edge detection operators to tackle this challenge. CTO surpasses existing methods in terms of segmentation accuracy and strikes a better balance between accuracy and efficiency, without the need for additional data inputs or label injections. Specifically, CTO adheres to the canonical encoder-decoder network paradigm, with a dual-stream encoder network comprising a mainstream CNN stream for capturing local features and an auxiliary StitchViT stream for integrating long-range dependencies. Furthermore, to enhance the model's ability to learn boundary areas, we introduce a boundary-guided decoder network that employs binary boundary masks generated by dedicated edge detection operators to provide explicit guidance during the decoding process. We validate the performance of CTO through extensive experiments conducted on seven challenging medical image segmentation datasets, namely ISIC 2016, PH2, ISIC 2018, CoNIC, LiTS17, and BTCV. Our experimental results unequivocally demonstrate that CTO achieves state-of-the-art accuracy on these datasets while maintaining competitive model complexity. The codes have been released at: https://github.com/xiaofang007/CTO.

V3DQutrit a volumetric medical image segmentation based on 3D qutrit optimized modified tensor ring model.

Verma P, Kumar H, Shukla DK, Satpathy S, Alsekait DM, Khalaf OI, Alzoubi A, Alqadi BS, AbdElminaam DS, Kushwaha A, Singh J

pubmed logopapersMay 6 2025
This paper introduces 3D-QTRNet, a novel quantum-inspired neural network for volumetric medical image segmentation. Unlike conventional CNNs, which suffer from slow convergence and high complexity, and QINNs, which are limited to grayscale segmentation, our approach leverages qutrit encoding and tensor ring decomposition. These techniques improve segmentation accuracy, optimize memory usage, and accelerate model convergence. The proposed model demonstrates superior performance on the BRATS19 and Spleen datasets, outperforming state-of-the-art CNN and quantum models in terms of Dice similarity and segmentation precision. This work bridges the gap between quantum computing and medical imaging, offering a scalable solution for real-world applications.

A Deep Learning Approach for Mandibular Condyle Segmentation on Ultrasonography.

Keser G, Yülek H, Öner Talmaç AG, Bayrakdar İŞ, Namdar Pekiner F, Çelik Ö

pubmed logopapersMay 6 2025
Deep learning techniques have demonstrated potential in various fields, including segmentation, and have recently been applied to medical image processing. This study aims to develop and evaluate computer-based diagnostic software designed to assess the segmentation of the mandibular condyle in ultrasound images. A total of 668 retrospective ultrasound images of anonymous adult mandibular condyles were analyzed. The CranioCatch labeling program (CranioCatch, Eskişehir, Turkey) was utilized to annotate the mandibular condyle using a polygonal labeling method. These annotations were subsequently reviewed and validated by experts in oral and maxillofacial radiology. In this study, all test images were detected and segmented using the YOLOv8 deep learning artificial intelligence (AI) model. When evaluating the model's performance in image estimation, it achieved an F1 score of 0.93, a sensitivity of 0.90, and a precision of 0.96. The automatic segmentation of the mandibular condyle from ultrasound images presents a promising application of artificial intelligence. This approach can help surgeons, radiologists, and other specialists save time in the diagnostic process.

Automated Bi-Ventricular Segmentation and Regional Cardiac Wall Motion Analysis for Rat Models of Pulmonary Hypertension.

Niglas M, Baxan N, Ashek A, Zhao L, Duan J, O'Regan D, Dawes TJW, Nien-Chen C, Xie C, Bai W, Zhao L

pubmed logopapersApr 1 2025
Artificial intelligence-based cardiac motion mapping offers predictive insights into pulmonary hypertension (PH) disease progression and its impact on the heart. We proposed an automated deep learning pipeline for bi-ventricular segmentation and 3D wall motion analysis in PH rodent models for bridging the clinical developments. A data set of 163 short-axis cine cardiac magnetic resonance scans were collected longitudinally from monocrotaline (MCT) and Sugen-hypoxia (SuHx) PH rats and used for training a fully convolutional network for automated segmentation. The model produced an accurate annotation in < 1 s for each scan (Dice metric > 0.92). High-resolution atlas fitting was performed to produce 3D cardiac mesh models and calculate the regional wall motion between end-diastole and end-systole. Prominent right ventricular hypokinesia was observed in PH rats (-37.7% ± 12.2 MCT; -38.6% ± 6.9 SuHx) compared to healthy controls, attributed primarily to the loss in basal longitudinal and apical radial motion. This automated bi-ventricular rat-specific pipeline provided an efficient and novel translational tool for rodent studies in alignment with clinical cardiac imaging AI developments.

Artificial intelligence demonstrates potential to enhance orthopaedic imaging across multiple modalities: A systematic review.

Longo UG, Lalli A, Nicodemi G, Pisani MG, De Sire A, D'Hooghe P, Nazarian A, Oeding JF, Zsidai B, Samuelsson K

pubmed logopapersApr 1 2025
While several artificial intelligence (AI)-assisted medical imaging applications are reported in the recent orthopaedic literature, comparison of the clinical efficacy and utility of these applications is currently lacking. The aim of this systematic review is to evaluate the effectiveness and reliability of AI applications in orthopaedic imaging, focusing on their impact on diagnostic accuracy, image segmentation and operational efficiency across various imaging modalities. Based on the PRISMA guidelines, a comprehensive literature search of PubMed, Cochrane and Scopus databases was performed, using combinations of keywords and MeSH descriptors ('AI', 'ML', 'deep learning', 'orthopaedic surgery' and 'imaging') from inception to March 2024. Included were studies published between September 2018 and February 2024, which evaluated machine learning (ML) model effectiveness in improving orthopaedic imaging. Studies with insufficient data regarding the output variable used to assess the reliability of the ML model, those applying deterministic algorithms, unrelated topics, protocol studies, and other systematic reviews were excluded from the final synthesis. The Joanna Briggs Institute (JBI) Critical Appraisal tool and the Risk Of Bias In Non-randomised Studies-of Interventions (ROBINS-I) tool were applied for the assessment of bias among the included studies. The 53 included studies reported the use of 11.990.643 images from several diagnostic instruments. A total of 39 studies reported details in terms of the Dice Similarity Coefficient (DSC), while both accuracy and sensitivity were documented across 15 studies. Precision was reported by 14, specificity by nine, and the F1 score by four of the included studies. Three studies applied the area under the curve (AUC) method to evaluate ML model performance. Among the studies included in the final synthesis, Convolutional Neural Networks (CNN) emerged as the most frequently applied category of ML models, present in 17 studies (32%). The systematic review highlights the diverse application of AI in orthopaedic imaging, demonstrating the capability of various machine learning models in accurately segmenting and analysing orthopaedic images. The results indicate that AI models achieve high performance metrics across different imaging modalities. However, the current body of literature lacks comprehensive statistical analysis and randomized controlled trials, underscoring the need for further research to validate these findings in clinical settings. Systematic Review; Level of evidence IV.

A plaque recognition algorithm for coronary OCT images by Dense Atrous Convolution and attention mechanism.

Meng H, Zhao R, Zhang Y, Zhang B, Zhang C, Wang D, Sun J

pubmed logopapersJan 1 2025
Currently, plaque segmentation in Optical Coherence Tomography (OCT) images of coronary arteries is primarily carried out manually by physicians, and the accuracy of existing automatic segmentation techniques needs further improvement. To furnish efficient and precise decision support, automated detection of plaques in coronary OCT images holds paramount importance. For addressing these challenges, we propose a novel deep learning algorithm featuring Dense Atrous Convolution (DAC) and attention mechanism to realize high-precision segmentation and classification of Coronary artery plaques. Then, a relatively well-established dataset covering 760 original images, expanded to 8,000 using data enhancement. This dataset serves as a significant resource for future research endeavors. The experimental results demonstrate that the dice coefficients of calcified, fibrous, and lipid plaques are 0.913, 0.900, and 0.879, respectively, surpassing those generated by five other conventional medical image segmentation networks. These outcomes strongly attest to the effectiveness and superiority of our proposed algorithm in the task of automatic coronary artery plaque segmentation.

AI-Assisted 3D Planning of CT Parameters for Personalized Femoral Prosthesis Selection in Total Hip Arthroplasty.

Yang TJ, Qian W

pubmed logopapersJan 1 2025
To investigate the efficacy of CT measurement parameters combined with AI-assisted 3D planning for personalized femoral prosthesis selection in total hip arthroplasty (THA). A retrospective analysis was conducted on clinical data from 247 patients with unilateral hip or knee joint disorders treated at Renmin Hospital of Hubei University of Medicine between April 2021 and February 2024. All patients underwent preoperative full-pelvis and bilateral full-length femoral CT scans. The raw CT data were imported into Mimics 19.0 software to reconstruct a three-dimensional (3D) model of the healthy femur. Using 3-matic Research 11.0 software, the femoral head rotation center was located, and parameters including femoral head diameter (FHD), femoral neck length (FNL), femoral neck-shaft angle (FNSA), femoral offset (FO), femoral neck anteversion angle (FNAA), tip-apex distance (TAD), and tip-apex angle (TAA) were measured. AI-assisted THA 3D planning system AIJOINT V1.0.0.0 software was used for preoperative planning and design, enabling personalized selection of femoral prostheses with varying neck-shaft angles and surgical simulation. Groups were compared by gender, age, and parameters. ROC curves evaluated prediction efficacy. Females exhibited smaller FHD, FNL, FO, TAD, TAA but larger FNSA/FNAA vs males (P<0.05). Patients >65 years had higher FO, TAD, TAA (P<0.05). TAD-TAA correlation was strong (r=0.954), while FNSA negatively correlated with TAD/TAA (r=-0.773/-0.701). ROC analysis demonstrated high predictive accuracy: TAD (AUC=0.891, sensitivity=91.7%, specificity=87.6%) and TAA (AUC=0.882, sensitivity=100%, specificity=88.8%). CT parameters (TAA, TAD, FNSA, FO) are interrelated and effective predictors for femoral prosthesis selection. Integration with AI-assisted planning optimizes personalized THA, reducing biomechanical mismatch risks.

Fully automated MRI-based analysis of the locus coeruleus in aging and Alzheimer's disease dementia using ELSI-Net.

Dünnwald M, Krohn F, Sciarra A, Sarkar M, Schneider A, Fliessbach K, Kimmich O, Jessen F, Rostamzadeh A, Glanz W, Incesoy EI, Teipel S, Kilimann I, Goerss D, Spottke A, Brustkern J, Heneka MT, Brosseron F, Lüsebrink F, Hämmerer D, Düzel E, Tönnies K, Oeltze-Jafra S, Betts MJ

pubmed logopapersJan 1 2025
The locus coeruleus (LC) is linked to the development and pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD). Magnetic resonance imaging-based LC features have shown potential to assess LC integrity in vivo. We present a deep learning-based LC segmentation and feature extraction method called Ensemble-based Locus Coeruleus Segmentation Network (ELSI-Net) and apply it to healthy aging and AD dementia datasets. Agreement to expert raters and previously published LC atlases were assessed. We aimed to reproduce previously reported differences in LC integrity in aging and AD dementia and correlate extracted features to cerebrospinal fluid (CSF) biomarkers of AD pathology. ELSI-Net demonstrated high agreement to expert raters and published atlases. Previously reported group differences in LC integrity were detected and correlations to CSF biomarkers were found. Although we found excellent performance, further evaluations on more diverse datasets from clinical cohorts are required for a conclusive assessment of ELSI-Net's general applicability. We provide a thorough evaluation of a fully automatic locus coeruleus (LC) segmentation method termed Ensemble-based Locus Coeruleus Segmentation Network (ELSI-Net) in aging and Alzheimer's disease (AD) dementia.ELSI-Net outperforms previous work and shows high agreement with manual ratings and previously published LC atlases.ELSI-Net replicates previously shown LC group differences in aging and AD.ELSI-Net's LC mask volume correlates with cerebrospinal fluid biomarkers of AD pathology.

Cervical vertebral body segmentation in X-ray and magnetic resonance imaging based on YOLO-UNet: Automatic segmentation approach and available tool.

Wang H, Lu J, Yang S, Xiao Y, He L, Dou Z, Zhao W, Yang L

pubmed logopapersJan 1 2025
Cervical spine disorders are becoming increasingly common, particularly among sedentary populations. The accurate segmentation of cervical vertebrae is critical for diagnostic and research applications. Traditional segmentation methods are limited in terms of precision and applicability across imaging modalities. The aim of this study is to develop and evaluate a fully automatic segmentation method and a user-friendly tool for detecting cervical vertebral body using a combined neural network model based on the YOLOv11 and U-Net3 + models. A dataset of X-ray and magnetic resonance imaging (MRI) images was collected, enhanced, and annotated to include 2136 X-ray images and 2184 MRI images. The proposed YOLO-UNet ensemble model was trained and compared with four other groups of image extraction models, including YOLOv11, DeepLabV3+, U-Net3 + for direct image segmentation, and the YOLO-DeepLab network. The evaluation metrics included the Dice coefficient, Hausdorff distance, intersection over union, positive predictive value, and sensitivity. The YOLO-UNet model combined the advantages of the YOLO and U-Net models and demonstrated excellent vertebral body segmentation capabilities on both X-ray and MRI datasets, which were closer to the ground truth images. Compared with other models, it achieved greater accuracy and a more accurate depiction of the vertebral body shape, demonstrated better versatility, and exhibited superior performance across all evaluation indicators. The YOLO-UNet network model provided a robust and versatile solution for cervical vertebral body segmentation, demonstrating excellent accuracy and adaptability across imaging modalities on both X-ray and MRI datasets. The accompanying user-friendly tool enhanced usability, making it accessible to both clinical and research users. In this study, the challenge of large-scale medical annotation tasks was addressed, thereby reducing project costs and supporting advancements in medical information technology and clinical research.

Volumetric atlas of the rat inner ear from microCT and iDISCO+ cleared temporal bones.

Cossellu D, Vivado E, Batti L, Gantar I, Pizzala R, Perin P

pubmed logopapersJan 1 2025
Volumetric atlases are an invaluable tool in neuroscience and otolaryngology, greatly aiding experiment planning and surgical interventions, as well as the interpretation of experimental and clinical data. The rat is a major animal model for hearing and balance studies, and a detailed volumetric atlas for the rat central auditory system (Waxholm) is available. However, the Waxholm rat atlas only contains a low-resolution inner ear featuring five structures. In the present work, we segmented and annotated 34 structures in the rat inner ear, yielding a detailed volumetric inner ear atlas which can be integrated with the Waxholm rat brain atlas. We performed iodine-enhanced microCT and iDISCO+-based clearing and fluorescence lightsheet microscopy imaging on a sample of rat temporal bones. Image stacks were segmented in a semiautomated way, and 34 inner ear volumes were reconstructed from five samples. Using geometrical morphometry, high-resolution segmentations obtained from lightsheet and microCT stacks were registered into the coordinate system of the Waxholm rat atlas. Cleared sample autofluorescence was used for the reconstruction of most inner ear structures, including fluid-filled compartments, nerves and sensory epithelia, blood vessels, and connective tissue structures. Image resolution allowed reconstruction of thin ducts (reuniting, saccular and endolymphatic), and the utriculoendolymphatic valve. The vestibulocochlear artery coursing through bone was found to be associated to the reuniting duct, and to be visible both in cleared and microCT samples, thus allowing to infer duct location from microCT scans. Cleared labyrinths showed minimal shape distortions, as shown by alignment with microCT and Waxholm labyrinths. However, membranous labyrinths could display variable collapse of the superior division, especially the roof of canal ampullae, whereas the inferior division (saccule and cochlea) was well preserved, with the exception of Reissner's membrane that could display ruptures in the second cochlear turn. As an example of atlas use, the volumes reconstructed from segmentations were used to separate macrophage populations from the spiral ganglion, auditory neuron dendrites, and Organ of Corti. We have reconstructed 34 structures from the rat temporal bone, which are available as both image stacks and printable 3D objects in a shared repository for download. These can be used for teaching, localizing cells or other features within the ear, modeling auditory and vestibular sensory physiology and training of automated segmentation machine learning tools.
Page 98 of 99986 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.