Sort by:
Page 98 of 1411408 results

Spondyloarthritis Research and Treatment Network (SPARTAN) Clinical and Imaging Year in Review 2024.

Ferrandiz-Espadin R, Liew JW

pubmed logopapersJul 1 2025
Diagnostic delay remains a critical challenge in axial spondyloarthritis (axSpA). This review highlights key clinical and imaging research from 2024 that addresses this persistent issue, with a focus on the evolving roles of MRI, artificial intelligence (AI), and updated Canadian management recommendations. Multiple studies published in 2024 emphasized the continued problem of diagnostic delay in axSpA. Studies support the continued use of sacroiliac joint MRI as a central diagnostic tool for axSpA, particularly in patients with chronic back pain and associated conditions like uveitis, psoriasis (PsO), or inflammatory bowel disease. AI-based tools for interpreting sacroiliac joint MRIs demonstrated moderate agreement with expert assessments, offering a potential solution to variability and limited access to expert musculoskeletal radiology. These innovations may support earlier diagnosis and reduce misclassification. Innovative models of care, including patient-initiated telemedicine visits, reduced in-person visit frequency without compromising clinical outcomes in patients with stable axSpA. Updated Canadian treatment guidelines introduced more robust data on Janus kinase (JAK) inhibitors and offered stronger support for tapering biologics in patients with sustained low disease activity or remission, while advising against abrupt discontinuation. This clinical and imaging year in review covers challenges and innovations in axSpA, emphasizing the need for early access to care and the development of tools to support prompt diagnosis and sustained continuity of care.

<sup>18</sup>F-FDG dose reduction using deep learning-based PET reconstruction.

Akita R, Takauchi K, Ishibashi M, Kondo S, Ono S, Yokomachi K, Ochi Y, Kiguchi M, Mitani H, Nakamura Y, Awai K

pubmed logopapersJul 1 2025
A deep learning-based image reconstruction (DLR) algorithm that can reduce the statistical noise has been developed for PET/CT imaging. It may reduce the administered dose of <sup>18</sup>F-FDG and minimize radiation exposure while maintaining diagnostic quality. This retrospective study evaluated whether the injected <sup>18</sup>F-FDG dose could be reduced by applying DLR to PET images. To this aim, we compared the quantitative image quality metrics and the false-positive rate between DLR with a reduced <sup>18</sup>F-FDG dose and Ordered Subsets Expectation Maximization (OSEM) with a standard dose. This study included 90 oncology patients who underwent <sup>18</sup>F-FDG PET/CT. They were divided into 3 groups (30 patients each): group A (<sup>18</sup>F-FDG dose per body weight [BW]: 2.00-2.99 MBq/kg; PET image reconstruction: DLR), group B (3.00-3.99 MBq/kg; DLR), and group C (standard dose group; 4.00-4.99 MBq/kg; OSEM). The evaluation was performed using the signal-to-noise ratio (SNR), target-to-background ratio (TBR), and false-positive rate. DLR yielded significantly higher SNRs in groups A and B than group C (p < 0.001). There was no significant difference in the TBR between groups A and C, and between groups B and C (p = 0.983 and 0.605, respectively). In group B, more than 80% of patients weighing less than 75 kg had at most one false positive result. In contrast, in group B patients weighing 75 kg or more, as well as in group A, less than 80% of patients had at most one false-positives. Our findings suggest that the injected <sup>18</sup>F-FDG dose can be reduced to 3.0 MBq/kg in patients weighing less than 75 kg by applying DLR. Compared to the recommended dose in the European Association of Nuclear Medicine (EANM) guidelines for 90 s per bed position (4.7 MBq/kg), this represents a dose reduction of 36%. Further optimization of DLR algorithms is required to maintain comparable diagnostic accuracy in patients weighing 75 kg or more.

Orbital CT deep learning models in thyroid eye disease rival medical specialists' performance in optic neuropathy prediction in a quaternary referral center and revealed impact of the bony walls.

Kheok SW, Hu G, Lee MH, Wong CP, Zheng K, Htoon HM, Lei Z, Tan ASM, Chan LL, Ooi BC, Seah LL

pubmed logopapersJul 1 2025
To develop and evaluate orbital CT deep learning (DL) models in optic neuropathy (ON) prediction in patients diagnosed with thyroid eye disease (TED), using partial versus entire 2D versus 3D images for input. Patients with TED ±ON diagnosed at a quaternary-level practice and who underwent orbital CT between 2002 and 2017 were included. DL models were developed using annotated CT data. The DL models were used to evaluate the hold-out test set. ON classification performances were compared between models and medical specialists, and saliency maps applied to randomized cases. 36/252 orbits in 126 TED patients (mean age, 51 years; 81 women) had clinically confirmed ON. With 2D image input for ON prediction, our models achieved (a) sensitivity 89%, AUC 0.86 on entire coronal orbital apex including bony walls, and (b) specificity 92%, AUC 0.79 on partial axial lateral orbital wall only annotations. ON classification performance was similar (<i>p</i> = 0.58) between DL model and medical specialists. DL models trained on 2D CT annotations rival medical specialists in ON classification, with potential to objectively enhance clinical triage for sight-saving intervention and incorporate model variants in the workflow to harness differential performance metrics.

Federated learning-based CT liver tumor detection using a teacher‒student SANet with semisupervised learning.

Lee CS, Lien JJ, Chain K, Huang LC, Hsu ZW

pubmed logopapersJul 1 2025
Detecting liver tumors via computed tomography (CT) scans is a critical but labor-intensive task. Extensive expert annotations are needed to train effective machine learning models. This study presents an innovative approach that leverages federated learning in combination with a teacher‒student framework, an enhanced slice-aware network (SANet), and semisupervised learning (SSL) techniques to improve the CT-based liver tumor detection process while significantly reducing its labor and time costs. Federated learning enables collaborative model training to be performed across multiple institutions without sharing sensitive patient data, thus ensuring privacy and security. The teacher-student SANet framework takes advantage of both teacher and student models, with the teacher model providing reliable pseudolabels that guide the student model in a semisupervised manner. This method not only improves the accuracy of liver tumor detection but also reduces the dependence on extensively annotated datasets. The proposed method was validated through simulation experiments conducted in four scenarios, and it demonstrated a model accuracy of 83%, which represents an improvement over the original locally trained models. This study presents a promising method for enhancing the CT-based liver tumor detection while reducing the incurred labor and time costs by utilizing federated learning, the teacher-student SANet framework, and SSL techniques. Compared with previous approaches, the proposed method achieved a model accuracy of 83%, representing a significant improvement. Not applicable.

Cross-domain subcortical brain structure segmentation algorithm based on low-rank adaptation fine-tuning SAM.

Sui Y, Hu Q, Zhang Y

pubmed logopapersJul 1 2025
Accurate and robust segmentation of anatomical structures in brain MRI provides a crucial basis for the subsequent observation, analysis, and treatment planning of various brain diseases. Deep learning foundation models trained and designed on large-scale natural scene image datasets experience significant performance degradation when applied to subcortical brain structure segmentation in MRI, limiting their direct applicability in clinical diagnosis. This paper proposes a subcortical brain structure segmentation algorithm based on Low-Rank Adaptation (LoRA) to fine-tune SAM (Segment Anything Model) by freezing SAM's image encoder and applying LoRA to approximate low-rank matrix updates to the encoder's training weights, while also fine-tuning SAM's lightweight prompt encoder and mask decoder. The fine-tuned model's learnable parameters (5.92 MB) occupy only 6.39% of the original model's parameter size (92.61 MB). For training, model preheating is employed to stabilize the fine-tuning process. During inference, adaptive prompt learning with point or box prompts is introduced to enhance the model's accuracy for arbitrary brain MRI segmentation. This interactive prompt learning approach provides clinicians with a means of intelligent segmentation for deep brain structures, effectively addressing the challenges of limited data labels and high manual annotation costs in medical image segmentation. We use five MRI datasets of IBSR, MALC, LONI, LPBA, Hammers and CANDI for experiments across various segmentation scenarios, including cross-domain settings with inference samples from diverse MRI datasets and supervised fine-tuning settings, demonstrate the proposed segmentation algorithm's generalization and effectiveness when compared to current mainstream and supervised segmentation algorithms.

Embryonic cranial cartilage defects in the Fgfr3<sup>Y367C</sup> <sup>/+</sup> mouse model of achondroplasia.

Motch Perrine SM, Sapkota N, Kawasaki K, Zhang Y, Chen DZ, Kawasaki M, Durham EL, Heuzé Y, Legeai-Mallet L, Richtsmeier JT

pubmed logopapersJul 1 2025
Achondroplasia, the most common chondrodysplasia in humans, is caused by one of two gain of function mutations localized in the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) leading to constitutive activation of FGFR3 and subsequent growth plate cartilage and bone defects. Phenotypic features of achondroplasia include macrocephaly with frontal bossing, midface hypoplasia, disproportionate shortening of the extremities, brachydactyly with trident configuration of the hand, and bowed legs. The condition is defined primarily on postnatal effects on bone and cartilage, and embryonic development of tissues in affected individuals is not well studied. Using the Fgfr3<sup>Y367C/+</sup> mouse model of achondroplasia, we investigated the developing chondrocranium and Meckel's cartilage (MC) at embryonic days (E)14.5 and E16.5. Sparse hand annotations of chondrocranial and MC cartilages visualized in phosphotungstic acid enhanced three-dimensional (3D) micro-computed tomography (microCT) images were used to train our automatic deep learning-based 3D segmentation model and produce 3D isosurfaces of the chondrocranium and MC. Using 3D coordinates of landmarks measured on the 3D isosurfaces, we quantified differences in the chondrocranium and MC of Fgfr3<sup>Y367C/+</sup> mice relative to those of their unaffected littermates. Statistically significant differences in morphology and growth of the chondrocranium and MC were found, indicating direct effects of this Fgfr3 mutation on embryonic cranial and pharyngeal cartilages, which in turn can secondarily affect cranial dermal bone development. Our results support the suggestion that early therapeutic intervention during cartilage formation may lessen the effects of this condition.

Response prediction for neoadjuvant treatment in locally advanced rectal cancer patients-improvement in decision-making: A systematic review.

Boldrini L, Charles-Davies D, Romano A, Mancino M, Nacci I, Tran HE, Bono F, Boccia E, Gambacorta MA, Chiloiro G

pubmed logopapersJul 1 2025
Predicting pathological complete response (pCR) from pre or post-treatment features could be significant in improving the process of making clinical decisions and providing a more personalized treatment approach for better treatment outcomes. However, the lack of external validation of predictive models, missing in several published articles, is a major issue that can potentially limit the reliability and applicability of predictive models in clinical settings. Therefore, this systematic review described different externally validated methods of predicting response to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC) patients and how they could improve clinical decision-making. An extensive search for eligible articles was performed on PubMed, Cochrane, and Scopus between 2018 and 2023, using the keywords: (Response OR outcome) prediction AND (neoadjuvant OR chemoradiotherapy) treatment in 'locally advanced Rectal Cancer'. (i) Studies including patients diagnosed with LARC (T3/4 and N- or any T and N+) by pre-medical imaging and pathological examination or as stated by the author (ii) Standardized nCRT completed. (iii) Treatment with long or short course radiotherapy. (iv) Studies reporting on the prediction of response to nCRT with pathological complete response (pCR) as the primary outcome. (v) Studies reporting external validation results for response prediction. (vi) Regarding language restrictions, only articles in English were accepted. (i) We excluded case report studies, conference abstracts, reviews, studies reporting patients with distant metastases at diagnosis. (ii) Studies reporting response prediction with only internally validated approaches. Three researchers (DC-D, FB, HT) independently reviewed and screened titles and abstracts of all articles retrieved after de-duplication. Possible disagreements were resolved through discussion among the three researchers. If necessary, three other researchers (LB, GC, MG) were consulted to make the final decision. The extraction of data was performed using the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) template and quality assessment was done using the Prediction model Risk Of Bias Assessment Tool (PROBAST). A total of 4547 records were identified from the three databases. After excluding 392 duplicate results, 4155 records underwent title and abstract screening. Three thousand and eight hundred articles were excluded after title and abstract screening and 355 articles were retrieved. Out of the 355 retrieved articles, 51 studies were assessed for eligibility. Nineteen reports were then excluded due to lack of reports on external validation, while 4 were excluded due to lack of evaluation of pCR as the primary outcome. Only Twenty-eight articles were eligible and included in this systematic review. In terms of quality assessment, 89 % of the models had low concerns in the participants domain, while 11 % had an unclear rating. 96 % of the models were of low concern in both the predictors and outcome domains. The overall rating showed high applicability potential of the models with 82 % showing low concern, while 18 % were deemed unclear. Most of the external validated techniques showed promising performances and the potential to be applied in clinical settings, which is a crucial step towards evidence-based medicine. However, more studies focused on the external validations of these models in larger cohorts is necessary to ensure that they can reliably predict outcomes in diverse populations.

Identifying threshold of CT-defined muscle loss after radiotherapy for survival in oral cavity cancer using machine learning.

Lee J, Lin JB, Lin WC, Jan YT, Leu YS, Chen YJ, Wu KP

pubmed logopapersJul 1 2025
Muscle loss after radiotherapy is associated with poorer survival in patients with oral cavity squamous cell carcinoma (OCSCC). However, the threshold of muscle loss remains unclear. This study aimed to utilize explainable artificial intelligence to identify the threshold of muscle loss associated with survival in OCSCC. We enrolled 1087 patients with OCSCC treated with surgery and adjuvant radiotherapy at two tertiary centers (660 in the derivation cohort and 427 in the external validation cohort). Skeletal muscle index (SMI) was measured using pre- and post-radiotherapy computed tomography (CT) at the C3 vertebral level. Random forest (RF), eXtreme Gradient Boosting (XGBoost), and Categorical Boosting (CatBoost) models were developed to predict all-cause mortality, and their performances were evaluated using the area under the curve (AUC). Muscle loss threshold was identified using the SHapley Additive exPlanations (SHAP) method and validated using Cox regression analysis. In the external validation cohort, the RF, XGBoost, and CatBoost models achieved favorable performance in predicting all-cause mortality (AUC: 0.898, 0.859, and 0.842). The SHAP method demonstrated that SMI change after radiotherapy was the most important feature for predicting all-cause mortality and consistently identified SMI loss ≥ 4.2% as the threshold in all three models. In multivariable analysis, SMI loss ≥ 4.2% was independently associated with increased all-cause mortality risk in both cohorts (derivation cohort: hazard ratio: 6.66, p < 0.001; external validation cohort: hazard ratio: 8.46, p < 0.001). This study can assist clinicians in identifying patients with considerable muscle loss after treatment and guide interventions to improve muscle mass. Question Muscle loss after radiotherapy is associated with poorer survival in patients with oral cavity cancer; however, the threshold of muscle loss remains unclear. Findings Explainable artificial intelligence identified muscle loss ≥ 4.2% as the threshold of increased all-cause mortality risk in both derivation and external validation cohorts. Clinical Relevance Muscle loss ≥ 4.2% may be the optimal threshold for survival in patients who receive adjuvant radiotherapy for oral cavity cancer. This threshold can guide clinicians in improving muscle mass after radiotherapy.

Accuracy of machine learning models for pre-diagnosis and diagnosis of pancreatic ductal adenocarcinoma in contrast-CT images: a systematic review and meta-analysis.

Lopes Costa GL, Tasca Petroski G, Machado LG, Eulalio Santos B, de Oliveira Ramos F, Feuerschuette Neto LM, De Luca Canto G

pubmed logopapersJul 1 2025
To evaluate the diagnostic ability and methodological quality of ML models in detecting Pancreatic Ductal Adenocarcinoma (PDAC) in Contrast CT images. Included studies assessed adults diagnosed with PDAC, confirmed by histopathology. Metrics of tests were interpreted by ML algorithms. Studies provided data on sensitivity and specificity. Studies that did not meet the inclusion criteria, segmentation-focused studies, multiple classifiers or non-diagnostic studies were excluded. PubMed, Cochrane Central Register of Controlled Trials, and Embase were searched without restrictions. Risk of bias was assessed using QUADAS-2, methodological quality was evaluated using Radiomics Quality Score (RQS) and a Checklist for AI in Medical Imaging (CLAIM). Bivariate random-effects models were used for meta-analysis of sensitivity and specificity, I<sup>2</sup> values and subgroup analysis used to assess heterogeneity. Nine studies were included and 12,788 participants were evaluated, of which 3,997 were included in the meta-analysis. AI models based on CT scans showed an accuracy of 88.7% (IC 95%, 87.7%-89.7%), sensitivity of 87.9% (95% CI, 82.9%-91.6%), and specificity of 92.2% (95% CI, 86.8%-95.5%). The average score of six radiomics studies was 17.83 RQS points. Nine ML methods had an average CLAIM score of 30.55 points. Our study is the first to quantitatively interpret various independent research, offering insights for clinical application. Despite favorable sensitivity and specificity results, the studies were of low quality, limiting definitive conclusions. Further research is necessary to validate these models before widespread adoption.

Preoperative prediction of post hepatectomy liver failure after surgery for hepatocellular carcinoma on CT-scan by machine learning and radiomics analyses.

Famularo S, Maino C, Milana F, Ardito F, Rompianesi G, Ciulli C, Conci S, Gallotti A, La Barba G, Romano M, De Angelis M, Patauner S, Penzo C, De Rose AM, Marescaux J, Diana M, Ippolito D, Frena A, Boccia L, Zanus G, Ercolani G, Maestri M, Grazi GL, Ruzzenente A, Romano F, Troisi RI, Giuliante F, Donadon M, Torzilli G

pubmed logopapersJul 1 2025
No instruments are available to predict preoperatively the risk of posthepatectomy liver failure (PHLF) in HCC patients. The aim was to predict the occurrence of PHLF preoperatively by radiomics and clinical data through machine-learning algorithms. Clinical data and 3-phases CT scans were retrospectively collected among 13 Italian centres between 2008 and 2022. Radiomics features were extracted in the non-tumoral liver area. Data were split between training(70 %) and test(30 %) sets. An oversampling was run(ADASYN) in the training set. Random-Forest(RF), extreme gradient boosting (XGB) and support vector machine (SVM) models were fitted to predict PHLF. Final evaluation of the metrics was run in the test set. The best models were included in an averaging ensemble model (AEM). Five-hundred consecutive preoperative CT scans were collected with the relative clinical data. Of them, 17 (3.4 %) experienced a PHLF. Two-hundred sixteen radiomics features per patient were extracted. PCA selected 19 dimensions explaining >75 % of the variance. Associated clinical variables were: size, macrovascular invasion, cirrhosis, major resection and MELD score. Data were split in training cohort (70 %, n = 351) and a test cohort (30 %, n = 149). The RF model obtained an AUC = 89.1 %(Spec. = 70.1 %, Sens. = 100 %, accuracy = 71.1 %, PPV = 10.4 %, NPV = 100 %). The XGB model showed an AUC = 89.4 %(Spec. = 100 %, Sens. = 20.0 %, Accuracy = 97.3 %, PPV = 20 %, NPV = 97.3 %). The AEM combined the XGB and RF model, obtaining an AUC = 90.1 %(Spec. = 89.5 %, Sens. = 80.0 %, accuracy = 89.2 %, PPV = 21.0 %, NPV = 99.2 %). The AEM obtained the best results in terms of discrimination and true positive identification. This could lead to better define patients fit or unfit for liver resection.
Page 98 of 1411408 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.