<sup>18</sup>F-FDG dose reduction using deep learning-based PET reconstruction.

Authors

Akita R,Takauchi K,Ishibashi M,Kondo S,Ono S,Yokomachi K,Ochi Y,Kiguchi M,Mitani H,Nakamura Y,Awai K

Affiliations (5)

  • Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. [email protected].
  • Department of Radiology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
  • Center for Radiation Disaster Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
  • Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
  • CT Systems Development Department, Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara City, Tochigi, 324-8550, Japan.

Abstract

A deep learning-based image reconstruction (DLR) algorithm that can reduce the statistical noise has been developed for PET/CT imaging. It may reduce the administered dose of <sup>18</sup>F-FDG and minimize radiation exposure while maintaining diagnostic quality. This retrospective study evaluated whether the injected <sup>18</sup>F-FDG dose could be reduced by applying DLR to PET images. To this aim, we compared the quantitative image quality metrics and the false-positive rate between DLR with a reduced <sup>18</sup>F-FDG dose and Ordered Subsets Expectation Maximization (OSEM) with a standard dose. This study included 90 oncology patients who underwent <sup>18</sup>F-FDG PET/CT. They were divided into 3 groups (30 patients each): group A (<sup>18</sup>F-FDG dose per body weight [BW]: 2.00-2.99 MBq/kg; PET image reconstruction: DLR), group B (3.00-3.99 MBq/kg; DLR), and group C (standard dose group; 4.00-4.99 MBq/kg; OSEM). The evaluation was performed using the signal-to-noise ratio (SNR), target-to-background ratio (TBR), and false-positive rate. DLR yielded significantly higher SNRs in groups A and B than group C (p < 0.001). There was no significant difference in the TBR between groups A and C, and between groups B and C (p = 0.983 and 0.605, respectively). In group B, more than 80% of patients weighing less than 75 kg had at most one false positive result. In contrast, in group B patients weighing 75 kg or more, as well as in group A, less than 80% of patients had at most one false-positives. Our findings suggest that the injected <sup>18</sup>F-FDG dose can be reduced to 3.0 MBq/kg in patients weighing less than 75 kg by applying DLR. Compared to the recommended dose in the European Association of Nuclear Medicine (EANM) guidelines for 90 s per bed position (4.7 MBq/kg), this represents a dose reduction of 36%. Further optimization of DLR algorithms is required to maintain comparable diagnostic accuracy in patients weighing 75 kg or more.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.