Sort by:
Page 97 of 1331328 results

Evaluation of artificial-intelligence-based liver segmentation and its application for longitudinal liver volume measurement.

Kimura R, Hirata K, Tsuneta S, Takenaka J, Watanabe S, Abo D, Kudo K

pubmed logopapersJun 10 2025
Accurate liver-volume measurements from CT scans are essential for treatment planning, particularly in liver resection cases, to avoid postoperative liver failure. However, manual segmentation is time-consuming and prone to variability. Advancements in artificial intelligence (AI), specifically convolutional neural networks, have enhanced liver segmentation accuracy. We aimed to identify optimal CT phases for AI-based liver volume estimation and apply the model to track liver volume changes over time. We also evaluated temporal changes in liver volume in participants without liver disease. In this retrospective, single-center study, we assessed the performance of an open-source AI-based liver segmentation model previously reported, using non-contrast and dynamic CT phases. The accuracy of the model was compared with that of expert radiologists. The Dice similarity coefficient (DSC) was calculated across various CT phases, including arterial, portal venous, and non-contrast, to validate the model. The model was then applied to a longitudinal study involving 39 patients without liver disease (527 CT scans) to examine age-related liver volume changes over 5 to 20 years. The model demonstrated high accuracy across all phases compared to manual segmentation. Among the CT phases, the highest DSC of 0.988 ± 0.010 was in the arterial phase. The intraclass correlation coefficients for liver volume were also high, exceeding 0.9 for contrast-enhanced phases and 0.8 for non-contrast CT. In the longitudinal study, the model indicated an annual decrease of 0.95%. This model provides high accuracy in liver segmentation across various CT phases and offers insights into age-related liver volume reduction. Measuring changes in liver volume may help with the early detection of diseases and the understanding of pathophysiology.

DWI-based Biologically Interpretable Radiomic Nomogram for Predicting 1- year Biochemical Recurrence after Radical Prostatectomy: A Deep Learning, Multicenter Study.

Niu X, Li Y, Wang L, Xu G

pubmed logopapersJun 10 2025
It is not rare to experience a biochemical recurrence (BCR) following radical prostatectomy (RP) for prostate cancer (PCa). It has been reported that early detection and management of BCR following surgery could improve survival in PCa. This study aimed to develop a nomogram integrating deep learning-based radiomic features and clinical parameters to predict 1-year BCR after RP and to examine the associations between radiomic scores and the tumor microenvironment (TME). In this retrospective multicenter study, two independent cohorts of patients (n = 349) who underwent RP after multiparametric magnetic resonance imaging (mpMRI) between January 2015 and January 2022 were included in the analysis. Single-cell RNA sequencing data from four prospectively enrolled participants were used to investigate the radiomic score-related TME. The 3D U-Net was trained and optimized for prostate cancer segmentation using diffusion-weighted imaging, and radiomic features of the target lesion were extracted. Predictive nomograms were developed via multivariate Cox proportional hazard regression analysis. The nomograms were assessed for discrimination, calibration, and clinical usefulness. In the development cohort, the clinical-radiomic nomogram had an AUC of 0.892 (95% confidence interval: 0.783--0.939), which was considerably greater than those of the radiomic signature and clinical model. The Hosmer-Lemeshow test demonstrated that the clinical-radiomic model performed well in both the development (P = 0.461) and validation (P = 0.722) cohorts. Decision curve analysis revealed that the clinical-radiomic nomogram displayed better clinical predictive usefulness than the clinical or radiomic signature alone in both cohorts. Radiomic scores were associated with a significant difference in the TME pattern. Our study demonstrated the feasibility of a DWI-based clinical-radiomic nomogram combined with deep learning for the prediction of 1-year BCR. The findings revealed that the radiomic score was associated with a distinctive tumor microenvironment.

Automated Diffusion Analysis for Non-Invasive Prediction of IDH Genotype in WHO Grade 2-3 Gliomas.

Wu J, Thust SC, Wastling SJ, Abdalla G, Benenati M, Maynard JA, Brandner S, Carrasco FP, Barkhof F

pubmed logopapersJun 10 2025
Glioma molecular characterization is essential for risk stratification and treatment planning. Noninvasive imaging biomarkers such as apparent diffusion coefficient (ADC) values have shown potential for predicting glioma genotypes. However, manual segmentation of gliomas is time-consuming and operator-dependent. To address this limitation, we aimed to establish a single-sequence-derived automatic ADC extraction pipeline using T2-weighted imaging to support glioma isocitrate dehydrogenase (IDH) genotyping. Glioma volumes from a hospital data set (University College London Hospitals; n=247) were manually segmented on T2-weighted MRI scans using ITK-Snap Toolbox and co-registered to ADC maps sequences using the FMRIB Linear Image Registration Tool in FSL, followed by ADC histogram extraction (Python). Separately, a nnUNet deep learning algorithm was trained to segment glioma volumes using T2w only from BraTS 2021 data (n=500, 80% training, 5% validation and 15% test split). nnUnet was then applied to the University College London Hospitals (UCLH) data for segmentation and ADC read-outs. Univariable logistic regression was used to test the performance manual and nnUNet derived ADC metrics for IDH status prediction. Statistical equivalence was tested (paired two-sided t-test). nnUnet segmentation achieved a median Dice of 0.85 on BraTS data, and 0.83 on UCLH data. For the best performing metric (rADCmean) the area under the receiver operating characteristic curve (AUC) for differentiating IDH-mutant from IDHwildtype gliomas was 0.82 (95% CI: 0.78-0.88), compared to the manual segmentation AUC 0.84 (95% CI: 0.77-0.89). For all ADC metrics, manually and nnUNet extracted ADC were statistically equivalent (p<0.01). nnUNet identified one area of glioma infiltration missed by human observers. In 0.8% gliomas, nnUnet missed glioma components. In 6% of cases, over-segmentation of brain remote from the tumor occurred (e.g. temporal poles). The T2w trained nnUnet algorithm achieved ADC readouts for IDH genotyping with a performance statistically equivalent to human observers. This approach could support rapid ADC based identification of glioblastoma at an early disease stage, even with limited input data. AUC = Area under the receiver operating characteristic curve, BraTS = The brain tumor segmentation challenge held by MICCAI, Dice = Dice Similarity Coefficient, IDH = Isocitrate dehydrogenase, mGBM = Molecular glioblastoma, ADCmin = Fifth ADC histogram percentile, ADCmean = Mean ADC value, ADCNAWM = ADC in the contralateral centrum semiovale normal white matter, rADCmin = Normalized ADCmin, VOI rADCmean = Normalized ADCmean.

U<sub>2</sub>-Attention-Net: a deep learning automatic delineation model for parotid glands in head and neck cancer organs at risk on radiotherapy localization computed tomography images.

Wen X, Wang Y, Zhang D, Xiu Y, Sun L, Zhao B, Liu T, Zhang X, Fan J, Xu J, An T, Li W, Yang Y, Xing D

pubmed logopapersJun 10 2025
This study aimed to develop a novel deep learning model, U<sub>2</sub>-Attention-Net (U<sub>2</sub>A-Net), for precise segmentation of parotid glands on radiotherapy localization CT images. CT images from 79 patients with head and neck cancer were selected, on which the label maps were delineated by relevant practitioners to construct a dataset. The dataset was divided into the training set (n = 60), validation set (n = 6), and test set (n = 13), with the training set augmented. U<sub>2</sub>A-Net, divided into U<sub>2</sub>A-Net V<sub>1</sub> (sSE) and U<sub>2</sub>A-Net V<sub>2</sub> (cSE) based on different attention mechanisms, was evaluated for parotid gland segmentation based on the DL loss function with U-Net, Attention U-Net, DeepLabV3+, and TransUNet as comparision models. Segmentation was also performed using GDL and GD-BCEL loss functions. Model performance was evaluated using DSC, JSC, PPV, SE, HD, RVD, and VOE metrics. The quantitative results revealed that U<sub>2</sub>A-Net based on DL outperformed the comparative models. While U<sub>2</sub>A-Net V<sub>1</sub> had the highest PPV, U<sub>2</sub>A-Net V<sub>2</sub> demonstrated the best quantitative results in other metrics. Qualitative results showed that U<sub>2</sub>A-Net's segmentation closely matched expert delineations, reducing oversegmentation and undersegmentation, with U<sub>2</sub>A-Net V<sub>2</sub> being more effective. In comparing loss functions, U<sub>2</sub>A-Net V<sub>1</sub> using GD-BCEL and U<sub>2</sub>A-Net V<sub>2</sub> using DL performed best. The U<sub>2</sub>A-Net model significantly improved parotid gland segmentation on radiotherapy localization CT images. The cSE attention mechanism showed advantages with DL, while sSE performed better with GD-BCEL.

Robotic Central Pancreatectomy with Omental Pedicle Flap: Tactics and Tips.

Kawano F, Lim MA, Kemprecos HJ, Tsai K, Cheah D, Tigranyan A, Kaviamuthan K, Pillai A, Chen JC, Polites G, Mise Y, Cohen M, Saiura A, Conrad C

pubmed logopapersJun 10 2025
Robotic central pancreatectomy is increasingly used for pre- or low-grade malignant tumors in the pancreatic body balancing preservation of pancreatic function while removing the target lesion.<sup>1-3</sup> Today, there is no established reconstruction method and high rates of postpancreatectomy fistulas (POPF) remain a significant concern. <sup>4,5</sup> We developed novel technique involving transgastric pancreaticogastrostomy with an omental pedicle advancement flap to reduce the risk of POPF. Additionally, preoperative deep-learning 3D organ modeling plays a crucial role in enhancing spatial understanding to enhance procedural safety.<sup>6,7</sup> METHODS: A 76-year-old female patient with a 33-mm, biopsy-confirmed high-risk IPMN underwent robotic-assisted central pancreatectomy. Preoperative CT was processed with a deep-learning system to create a patient-specific 3D model, enabling virtual simulation of port configurations. The optimal setup was selected based on the spatial relationship between port site, tumor location, and anatomy A transgastric pancreaticogastrostomy with omental flap reinforcement was performed to reduce POPF leading to a simpler reconstruction compared to pancreaticojejunostomy. The procedure lasted 218 min with minimal blood loss (50 ml). No complications occurred, and the patient was discharged on postoperative Day 3 after drain removal. Final pathology showed low-grade dysplasia. This approach, facilitated by robotic assistance, effectively preserves pancreatic function while treating a low-grade malignant tumor. Preoperative 3D organ modeling enhances the spatial understanding with the goal to increase procedural safety. Finally, the omental pedicle advancement flap technique shows promise in possibly reducing the incidence or at least the impact of POPF.

Multi-task and multi-scale attention network for lymph node metastasis prediction in esophageal cancer.

Yi Y, Wang J, Li Z, Wang L, Ding X, Zhou Q, Huang Y, Li B

pubmed logopapersJun 9 2025
The accurate diagnosis of lymph node metastasis in esophageal squamous cell carcinoma is crucial in the treatment workflow, and the process is often time-consuming for clinicians. Recent deep learning models predicting whether lymph nodes are affected by cancer in esophageal cancer cases suffer from challenging node delineation and hence gain poor diagnosis accuracy. This paper proposes an innovative multi-task and multi-scale attention network (M <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>2</mn></mmultiscripts> </math> ANet) to predict lymph node metastasis precisely. The network softly expands the regions of the node mask and subsequently utilizes the expanded mask to aggregate image features, thereby amplifying the node contexts. It additionally proposes a two-branch training strategy that compels the model to simultaneously predict metastasis probability and node masks, fostering a more comprehensive learning process. The node metastasis prediction performance has been evaluated on a self-collected dataset with 177 patients. Our model finally achieves a competitive accuracy of 83.7% on the test set comprising 577 nodes. With the adaptability to intricate patterns and ability to handle data variations, M <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>2</mn></mmultiscripts> </math> ANet emerges as a promising tool for robust and comprehensive lymph node metastasis prediction in medical image analysis.

MHASegNet: A multi-scale hybrid aggregation network of segmenting coronary artery from CCTA images.

Li S, Wu Y, Jiang B, Liu L, Zhang T, Sun Y, Hou J, Monkam P, Qian W, Qi S

pubmed logopapersJun 9 2025
Segmentation of coronary arteries in Coronary Computed Tomography Angiography (CCTA) images is crucial for diagnosing coronary artery disease (CAD), but remains challenging due to small artery size, uneven contrast distribution, and issues like over-segmentation or omission. The aim of this study is to improve coronary artery segmentation in CCTA images using both conventional and deep learning techniques. We propose MHASegNet, a lightweight network for coronary artery segmentation, combined with a tailored refinement method. MHASegNet employs multi-scale hybrid attention to capture global and local features, and integrates a 3D context anchor attention module to focus on key coronary artery structures while suppressing background noise. An iterative, region-growth-based refinement addresses crown breaks and reduces false alarms. We evaluated the method on an in-house dataset of 90 subjects and two public datasets with 1060 subjects. MHASegNet, coupled with tailored refinement, outperforms state-of-the-art algorithms, achieving a Dice Similarity Coefficient (DSC) of 0.867 on the in-house dataset, 0.875 on the ASOCA dataset, and 0.827 on the ImageCAS dataset. The tailored refinement significantly reduces false positives and resolves most discontinuities, even for other networks. MHASegNet and the tailored refinement may aid in diagnosing and quantifying CAD following further validation.

Snap-and-tune: combining deep learning and test-time optimization for high-fidelity cardiovascular volumetric meshing

Daniel H. Pak, Shubh Thaker, Kyle Baylous, Xiaoran Zhang, Danny Bluestein, James S. Duncan

arxiv logopreprintJun 9 2025
High-quality volumetric meshing from medical images is a key bottleneck for physics-based simulations in personalized medicine. For volumetric meshing of complex medical structures, recent studies have often utilized deep learning (DL)-based template deformation approaches to enable fast test-time generation with high spatial accuracy. However, these approaches still exhibit limitations, such as limited flexibility at high-curvature areas and unrealistic inter-part distances. In this study, we introduce a simple yet effective snap-and-tune strategy that sequentially applies DL and test-time optimization, which combines fast initial shape fitting with more detailed sample-specific mesh corrections. Our method provides significant improvements in both spatial accuracy and mesh quality, while being fully automated and requiring no additional training labels. Finally, we demonstrate the versatility and usefulness of our newly generated meshes via solid mechanics simulations in two different software platforms. Our code is available at https://github.com/danpak94/Deep-Cardiac-Volumetric-Mesh.

Hybrid adaptive attention deep supervision-guided U-Net for breast lesion segmentation in ultrasound computed tomography images.

Liu X, Zhou L, Cai M, Zheng H, Zheng S, Wang X, Wang Y, Ding M

pubmed logopapersJun 9 2025
Breast cancer is the second deadliest cancer among women after lung cancer. Though the breast cancer death rate continues to decline in the past 20 years, the stages IV and III breast cancer death rates remain high. Therefore, an automated breast cancer diagnosis system is of great significance for early screening of breast lesions to improve the survival rate of patients. This paper proposes a deep learning-based network hybrid adaptive attention deep supervision-guided U-Net (HAA-DSUNet) for breast lesion segmentation of breast ultrasound computed tomography (BUCT) images, which replaces the traditionally sampled convolution module of U-Net with the hybrid adaptive attention module (HAAM), aiming to enlarge the receptive field and probe rich global features while preserving fine details. Moreover, we apply the contrast loss to intermediate outputs as deep supervision to minimize the information loss during upsampling. Finally, the segmentation prediction results are further processed by filtering, segmentation, and morphology to obtain the final results. We conducted the experiment on our two UCT image datasets HCH and HCH-PHMC, and the highest Dice score is 0.8729 and IoU is 0.8097, which outperform all the other state-of-the-art methods. It is demonstrated that our algorithm is effective in segmenting the legion from BUCT images.

Dose to circulating blood in intensity-modulated total body irradiation, total marrow irradiation, and total marrow and lymphoid irradiation.

Guo B, Cherian S, Murphy ES, Sauter CS, Sobecks RM, Rotz S, Hanna R, Scott JG, Xia P

pubmed logopapersJun 8 2025
Multi-isocentric intensity-modulated (IM) total body irradiation (TBI), total marrow irradiation (TMI), and total marrow and lymphoid irradiation (TMLI) are gaining popularity. A question arises on the impact of the interplay between blood circulation and dynamic delivery on blood dose. This study answers the question by introducing a new whole-body blood circulation modeling technique. A whole-body CT with intravenous contrast was used to develop the blood circulation model. Fifteen organs and tissues, heart chambers, and great vessels were segmented using a deep-learning-based auto-contouring software. The main blood vessels were segmented using an in-house algorithm. Blood density, velocity, time-to-heart, and perfusion distributions were derived for systole, diastole, and portal circulations and used to simulate trajectories of blood particles during delivery. With the same prescription of 12 Gy in 8 fractions, doses to circulating blood were calculated for three plans: (1) an IM-TBI plan prescribing uniform dose to the whole body while reducing lung and kidney doses; (2) a TMI plan treating all bones; and (3) a TMLI plan treating all bones, major lymph nodes, and spleen; TMI and TMLI plans were optimized to reduce doses to non-target tissue. Circulating blood received 1.57 ± 0.43 Gy, 1.04 ± 0.32 Gy, and 1.09 ± 0.32 Gy in one fraction and 12.60 ± 1.21 Gy, 8.34 ± 0.88 Gy, and 8.71 ± 0.92 Gy in 8 fractions in IM-TBI, TMI, and TMLI, respectively. The interplay effect of blood motion with IM delivery did not change the mean dose, but changed the dose heterogeneity of the circulating blood. Fractionation reduced the blood dose heterogeneity. A novel whole-body blood circulating model was developed based on patient-specific anatomy and realistic blood dynamics, concentration, and perfusion. Using the blood circulation model, we developed a dosimetry tool for circulating blood in IM-TBI, TMI, and TMLI.
Page 97 of 1331328 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.